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ABSTRACT

V

L_
v

To define and solve the problems of transportation in the California Corridor in the year 2010,
1.

the 1989 California Polytechnic State University Aeronautical Engineering Senior Design class determined

future corridor transportation needs and developed a system to meet the requirements. A market study,

which included interpreting travel demand and gauging the future of regional and national air travel in and

out of the corridor, allowed the goals of the project to be accurately refined. Comprehensive trade-off

studies of several proposed transportation systems were conducted to determine which components would

form the final proposed system, then preliminary design and further analysis was performed for each

resulting component.

The proposed system consists of three vehicles a special hub or mode mixer, the Corridor Access

Port (CAP). The vehicles are an electric powered aircraft to serve secondary airports and the CAP, a high

speed magnetic levitation train running through the CAP and the high population density areas of the

corridor, and a vertical takeoff and landing tilt rotor aircraft to serve both intercity and intra-

metropolitan travelers from the CAP and city vertiports. The CAP is a combination and an extension of

the hub, mode mixer, and Wayport concepts. The CAP is an integrated part of the system which meets

the travel demands in the corridor, and interfaces with interstate and international travel.
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SUMMARY

V

The California Corridor Air Transit (CAT) System is designed around the concept of the central

hub known as the Corridor Access Port (CAP). To provide service throughout the Corridortusing the

CAP, two types of aircraft have been designed: a tilt rotor vertical takeoff and landing aircraft (VTOL)

using hydrogen fuel, and a conventional takeoff and landing aircraft using electric propulsion (ECTOL).

The forte of the VTOL is in serving the large metropolitan areas such as Los Angeles, San Francisco, and

San Diego, because it can operate closer to its passengers initial origins or final destinations, thereby

eliminating ground access problems. The ECTOL would provide an additional means of transport with

less of a door-to-door nature. It will fly routes between the CAP and existing airports such as Long

Beach, Orange County, or Ontario in the L.A. area, Oakland, Concord, or San Jose in the Bay Area, or

small cities such as Santa Barbara and Reno. To supplement the handling of the total traffic generated in

the California Corridor, a high speed rail ground system, incorporating magnetic levitation (Mag-Lev) has

been additionally designed into the system. This train will run north-south routes from San Diego to

Sacramento. It provides service for high volumes of traffic at low operating cost.

In order to meet the specifications set by the corridor transportation analysis, and to provide

service for the travel demand expected, each part of the system will have a certain number of vehicles,

terminals, and support facilities.
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VTOL

By placing vertiports in the major metropolitan areas, namely Los Angeles, San Francisco, San

Diego, and Sacramento, using the requirements laid down by the level-of-service criteria and the noise

guidelines, it was estimated that there would be approximately 58 vertiports required throughout the

Corridor. There would be up to 6 flights per hour for the urban vertiports, while the suburban vertiports

would handle 4 flights per hour. Working with vehicle flow dynamics and assuming a load-unload time

of 10 minutes and refuel times of 5 to 10 minutes, it was calculated that there would be at least 8 VTOLs

per urban vertiport and 6 VTOLs per suburban vcrtiport required to fly between the CAP and the

vertiport during peak times. Assuming that half the vertiports would be of the urban type and half

would be of the suburban type, it was calculated that 406 VTOL aircraft would be required. Accounting

for aircraft out of service for maintenance and other miscellaneous reasons, it was estimated that 450

aircraft would initially be manufactured. By stipulating that the major portion of refueling and

maintenance be done at one central location, and adjusting the vehicle schedules and overhauls accordingly,

a single fueling and maintenance facility could be located at the CAP.

ECTOL

The electric CTOL (ECTOL) would serve the airports currently being served by commuter

airlines. Their niche in the system would be service to existing airports in the metropolitan areas

throughout the Corridor. In the large cities, these ECTOLs would provide a somewhat lower level

service at higher load factors than the VTOL, and would do so at a somewhat lower cost. For smaller

cities that are not served by VTOLs and are not on the Mag-Lev route, the ECTOLs would be the only

source of Corridor transportation. From the above conditions, 32 airports in the California Corridor

were targeted for ECTOL operations. The existent terminals will require minor modifications to

accommodate electric propulsion aircraft. To serve these ports with a specified frequency of 4 flights per

hour would result in a requirement of six ECTOLs per link, for a total of 192 aircraft. With overhead, a

final estimate resulted in the need for about 210 aircraft. Fuel and maintenance facilities will be located

at each airport served with a central support facility at the CAP.

Mag-Lev

The Mag-Lev will run from San Diego to Sacramento with a branch at Los Angeles going to Indio

and a branch at Stockton going to Concord in the Bay Area. In order to provide optimum service, an

attractive balance was established between two factors. By placing as many stops as possible along the

way, the travel demand would increase. However, with too many stops, the stage length and average

speed would decrease beyond acceptable levels. Therefore, an optimum selection based on operating cost

v
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was made. This allowed for 12 terminals in the following locations: Sacramento, Stockton, Concord,

Fresno, the CAP, Bakersfield, Glendale, Los Angeles, Anaheim, San Diego, Ontario, and Indio. To

transport the flow expected during peak times, it was calculated that 56 cars would be needed; a fleet

estimate of 66 cars allows for overhead. For this particular route selection, allowing rail movement in

both direction, there would be 585 miles of double guideway required. Two stockyards and maintenance

facilities will be located at Stockton and Ontario.
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CONCLUSION

The numbers of vehicles, terminals, and support facilities for each of the modes in the CAT

system will adequately provide service for the forecasted demand of intercity, national, and international

travelers in the year 2010. While the system will be pushed to its limits during its peak periods, there

will be extra vehicles available during the longer duration base and night periods. This will allow for

alternative uses such as mail, cargo, or specialized transport. Additionally, all parts of the system have

been designed with room for growth in mind. For example, if the passenger traffic increases, or cargo

hauling proves to be a very profitable venture, additional VTOL and ECTOL aircraft and Mag-Lev trains

can be added, or the frequency of flights can be increased. New terminal facilities can also be constructed.

With proper consideration to marginal benefit and additional cost, the system can be expanded extensively.
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CORRIDOR MARKET ANALYSIS

V

v

The purpose of this market analysis is to present a study of a transportation system to meet the

needs within the California Corridor in the year 2010. The rapidly growing population of California has

been described as one of the major problems facing the state, and, at a projected influx of nine million

people over the next twenty years, is similar in magnitude to the populations of Nevada, Oregon, and

Utah. As population is one of the most important factors influencing the demand on transportation, a

new system must be developed to augment the state's already overburdened transportation system. The

public though, will not endorse a revolutionary system if it cannot be competitive with current

alternatives in terms of cost, reliability, time, and convenience. Thus, this market analysis covers present

transportation systems in California, and discusses several proposed concepts, in order to determine the

most feasible system for the future.

Physical Definition of the California Corridor

The California Corridor includes any point within approximately 500 nautical miles of any of

California's four major cities (Los Angeles, San Francisco, San Diego, and Sacramento), which contain

seventy percent of the State's population. Although this definition of the Corridor encompasses

destinations outside of California's borders, such as Las Vegas, Rent, Phoenix, and Portland, this analysis

will concentrate mainly on the transportation system within California.
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Economic Impact of Transportation in California

Transportation plays a major economic role in California; it affects the price and desirability of

all goods and services the State produces (Ref. i). Furthermore, in the future, transportation may be the

most critical link in the state's economic competitiveness and infrastructure (Ref.27).

Transportation accounts for nearly 17 percent of the Gross State Product. The transportation

service industries employ 306,000 California residents. The manufacturers of transportation equipment

employ an additional 274,000. If those industries which support the transportation industry were

considered, the previously mentioned figures would be doubled. This shows that a total of approximately

11 percent of California's working population is employed in a transportation-related field (Ref. 3).

Californians in general use transportation extensively for commuting. With a complete breakdown of all

vehicle-based transportation, 70 percent of the employees in the State would be unable to get to work.

Another major contributor to the high volume of travel in the California Corridor is tourism.

Travelers spend $24.9 billion in the state every year on transportation. Since travelers from non-adjacent

states usually do not bring their own automobiles, they must utilize the State's transportation, whether

private or publicly owned. Every dollar spent by travelers generates better than 22 cents in wages, an

average of $208 of annual income for each resident of California. Almost 498,000 jobs have been

generated by travel spending (Ref. 31).

Evolution of Ground Transportation by the Year 2010

In many ways, transportation has made California what it is today. According to Transformation

of Transportation (Ref. 5), "We now live in a society, especially in California, whose very social fabric is

woven with transportation." There is little doubt that a system could capture a significant percentage of

California's travel, based on the number of miles currently traveled, by offering inexpensive and

convenient service on par with that of personal vehicles. Of the many factors which affect the commuter's

use of a system, travel time may be more significant in determining future travel demand than fares or

other out-of-pocket costs (Ref. 6). However, current public transit systems face considerable problems in

California. The 1980 census revealed that the systems were used by only 16.4 percent of the workers in

the San Francisco-Oakland area, 7 percent in Los Angeles, 3.5 percent in Sacramento, and 3.3 percent in San

Diego. Because of this low ridership, these systems have experienced revenue deficits. However, new rail

systems are planned in Sacramento, San Jose and Los Angeles (Ref. 4). Possible reasons for low ridership

are that the public transportation systems offer few advantages, they are no faster than driving, they do

not go exactly where the passenger wishes to go, and they require the passenger to plan his life around the

system. A new system that does not address these concerns is destined to suffer the same fate as the

current systems.

v
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In a study that was integrated with the 1980 U.S. Census, 12.5 of the 13.6 million considered in

the Census used a vehicle to travel to work (Ref. 7). A number of the areas represented in the Census

study were in California, including Los Angeles-Long Beach, Fresno, San Francisco, Anaheim-Santa Ana,

Riverside, Bakersfield, San Diego, and Sacramento. These statistics illustrate the significance of

transportation in California. During the 1970 to 1977 time period, the use of public transportation

decreased by three percent, while this same time period saw great increases in the amount of personal

vehicles in use on California's roads, highways, and freeways. In the Los Angeles-Long Beach area, 93

percent of all commuter miles were accumulated in personally owned vehicles. Of these miles, 75 percent

were driven by solo commuters. The situation is similar in most of the state. Despite government

promotion of ridesharing by means of special carpool freeway lanes and advertising, only 16 to 23 percent

of commuters carpool (Ref. 7).

According to Christopher Swan, "the dominant u_e of automobiles and the relative insignificance

of public transit and non-motorized transport has led to a situation where one often has no choice but to

drive. If serving the widest range of people in the safest, most economical, most equitable and

environmentally benign way is the purpose of our (current) transportation systems, then they fall far

short of reaching that objective" (Ref. 5).

Automobile Trends

One of the biggest complaints of the automobile commuter is the delays due to heavy congestion

on roads and freeways. An evaluation of the present and future prospects of automobile traffic will

reveal much about the prospects for an alternate transportation system in the years to come. Currently

the 15 million residents of Southern California spend a half million hours per day in over 300 miles of

traffic, averaging 31 miles per hour. The heavily traveled 60 mile commute from Riverside to Los

Angeles typically takes 2 to 2.5 hours (Ref. 8). Projected trends show that the congestion of the

highways will continue. The U.S. Department of Transportation says that the size of the automobile fleet

will continue to increase throughout the 1980's and 1990's. Figure 1 shows the predictions of several

studies as to the number of vehicles which will be in operation in the future. All in all, with the

expected trend of increasing population, there is going to be a similar increase in the number of cars

clogging the ground transportation system. Therefore, it will become necessary to find an alternate mode

of transportation (Ref. 9).
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Figure 1. U. S. Automobiles in Operation

Total costs to drive an automobile can be divided into two sections: fixed costs and variable

costs. Fixed costs include insurance, license and registration, and depreciation and finance charges.

Variable costs consider gas and oil, maintenance, and tires.

The rising fixed costs of driving an automobile are shown in Figure 2. In addition, with the

passing of Proposition 103, the insurance initiative, the cost of insuring an automobile may decrease

slightly or level off in the future. Figure 3 shows slight decreases in variable costs in the years 1973 -

74, 1976 - 77, and 1983 -84, possibly due to fluctuations in the costs of gas, oil, maintenance, and tires.
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Figure 4 demonstrates that the total cost to own and operate an automobile increased between 1973 and

1983, and decreased between 1983 and 1985. This latter decrease is not comparable to the increase in fixed



andvariablecostsfor thesametimeperiod.A possiblereasonforthisdiscrepancyis thatautomobiles

havebecomemoreefficientandthuslessexpensive.Thetrendsshownfortotal,fixed,andvariablecosts

areexpectedto continueuntiltheyear2010(Rcf.7).
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Many civic authorities identify traffic congestion as one of California's most pressing problems.

In the years from 1964 to 1987, California's population increased by 44 percent, the number of registered

vehicles increased by 94 percent, and the vehicle miles traveled increased by 63 percent. The construction

of new freeway lane miles increased by only 32 percent (Ref. 10). The growth of traffic has out-paced the

increase in freeway capacity by a factor of five-to-one (Ref. 4).

As bad as traffic is currently, it is expected to get much worse. The average freeway speeds in

Southern California will drop to only 11 miles per hour in 2010. A motorist traveling from San Diego to

Santa Monica will crawl at only 7 miles per hour (Ref. 8). These speeds take into account all the new

freeways currently planned to be operational by this time. By 2010, commuters could be spending 50

percent of their waking hours stuck in traffic. If all proposed Capital Intensive Rail and High Occupancy

Vehicle projects are built, the average speeds could be brought up to 15 miles per hour. This would leave

the commuters stuck in traffic only 45 percent of the time (Ref. 11). The average one-way commute

which currently takes 45 minutes would rise to 2 full hours (Ref. 6). California could partially build its

way out of the impending mess by adding 1000 miles of new freeways and 350 miles of rail lines at a cost

of 110 billion dollars (Ref. 4).
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It is seen that with the increase in population there will be an increase in the number of

automobiles on the already clogged highway system. Therefore, it is necessary to find alternate modes of

transportation to meet the needs and demands of commuters and travelers. In addition, the cost of

alternate modes of transportation must be competitive enough to motivate the public to use them.

Currently Proposed Solutions

The Southern California Association of Governments (SCAG) proposed, in their Draft Regional

Mobility Plan, ideas for cutting demand by 4 million trips (Ref. 12). Encouraging telecommuting, which

is working at home via computer telecommunications, is seen as a substitute for commuting to work for

some employees, and modification of the work week could eliminate approximately 3 million daily trips

(Ref. 13). An additional 100,000 trips could be absorbed by ridesharing. Finally, SCAG believes that

approximately 900,000 trips could be eliminated by rapid transit systems (Ref. 12). This study has

critics, however, such as Mary Ann Von Glinow, a professor at the University of Southern California,

who does not believe that telecommuting is any kind of panacea for our transportation problems (Ref. 14).

Also, ridesharing programs have not been popular in California, and no currently planned rapid transit

system will handle the volume SCAG has requested. Finally, one half of all trips at peak commuting

hours are not work related (Ref. 15). SCAG also made some general recommendations such as: use of

private transportation services to meet transit needs shall be encouraged; circuitous routings of goods

should be eliminated; the effects of railroad and truck traffic, such as noise and traffic delay, should be

minimized; and the user should pay for transportation projects (Ref. 15). Finally, the politically

powerful land development industry must not be allowed to overshadow other considerations when

deciding how land is to be used. The infrastructure must be developed to enable the state to handle

further growth (Ref. 4).

The public transportation systems currently in use are subsidized in the magnitude of billions of

dollars. The federal government has provided funds for railroad tracks, the State has maintained roads,

and commuter airlines have received subsidies for serving rural areas. Therefore, new transportation

systems will have to compete with these existing systems for future subsidies if they cannot operate

profitably. If the users could be made to directly pay the true cost of their transportation, as opposed to

indirectly paying through higher taxes, the chances of a new system taking hold of a market share would

increase greatly. It is generally agreed, for example, that the trucking industry does a great deal of

damage to the nation's roads and highways. The consumer pays for this in his taxes rather than in a higher

price for the goods delivered by truck. If this situation were reversed, the prospects of a system that did

not damage the roads would be increased. The Legislative Analyst of the State of California believes that

if people were made to pay the true cost of driving, they would be more willing to seek alternate forms

of transportation (Ref. 16).
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It is often assumed that rail and bus service is always the most efficient solution to the ground

transportation problem. However, such statements cannot be accepted without critical analysis. In

Reference 5, it is stated that "contributing to the confusion is the belief that buses and trains are more

efficient than automobiles in all circumstances. For instance, compared to cars averaging over 25 miles per

gallon, diesel buses of 60 to 80 person capacity can be efficient on long commute runs, assuming they are

full; but if half-empty and stopping frequently in congested city streets, they may not be efficient. The

Bay Area Rapid Transit system was built on the belief that high-speed rail transit was more efficient than

buses or cars, a seemingly logical notion considering how little energy trains can consume in operation.

But BART consumed an enormous quantity of energy in the construction of elevated concrete tracks,

subways and an underwater tunnel of barge-sized tubes. Over 10 years and $1.6 billion went into BART,

and it now carries only 2 to 5 percent of the regional transit volume. The energy BART can save will not

surpass that used in construction for perhaps a century". A design study done by Stanford University in

1969 (Ref. 17) used helicopters to provide transportation in the San Francisco Bay area. The results of

this report show that, "For longer range routes and with lower densities the (Metropolitan Air Transit

System) shows a considerable cost advantage (over the BART system). The reason for the high cost of

BART transportation at low traffic densities is the very fixed costs of real estate and tracks."

Air Travel t

In "California Aviation into the Future" (Ref. 18), the California Committee on Aviation and

Airports reported that California has seven of the nation's twenty busiest airports and the busiest air

corridor in the entire world, and that 50% of the international trade in California passes through the

State's airports. Airport usage in the California corridor was analyzed using the cumulative airline flight

schedules for 1988, which list all airline flights in North America by origin and destination. Airports

considered for the Corridor were public airports currently being serviced by commuter airlines and major

airports that could be serviced by a 500 nmi. service range aircraft, including, Las Vegas, Portland,

Phoenix, and Rent. The data for the number of flights per day were then totaled by airport (Table I) and

city pair (Table II) in the corridor. Results from the study were: 1) of 283 public airports in California,

only 32 have daily scheduled commuter flights (suggesting that certain airports are over used or underused

and usage could be evened out); 2) the airport pair of LAX and Linbergh Field in San Diego, the largest

and third largest airports in California, respectively, has more flights per day than does the pair of LAX

and San Francisco International, the two largest airports; 3) even with only 32 commuter airports, there

are still 122 airport pairs (direct routes) currently being flown in the corridor; and 4) 59% of the flights

originating in the corridor stay in the corridor. Other results from the study, such as the fact that about

48% of the flights at LAX are commuter flights (in corridor) compare well with current suggested

figures. Due to the fact that data for this survey were taken from airline flight schedule information,
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Table I. Flights per Day at Corridor Airports

In Corridor Out of Corridor

Airport (flights/day) (flights/day)

Bakersfield 36 2

Burbank 102 45

Fresno 45 4

Lake Tahoe 13 0

Long Beach 42 28

LAX 473 504

Mammoth 2 0

Modesto 11 0

Monterey 45 1

Ontario 112 133

Orange County 112 74

Oxnard 10 0

Palm Springs 57 25

Redding 16 0

Sacramento 142 57

San Diego 223 173

S FO 381 329

Oakland 105 56

San Jose 123 83

San Luis Obispo 47 0

Santa Barbara 70 0

Santa Maria 30 0

Total

38

147

49

13

70

977

2

11

46

t245

186

10

82

16

199

396

710

161

206

47

70

3O
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Table II.

City Pair

LAX-San Diego

SFO-LAX

Phoenix-LAX

Las Vegas-LAX

Phoenix-San Diego

SFO-Sacramento

LAX-San Jose

Phoenix-Ontario

LAX-Palm Springs

San Diego-SFO

LAX-Santa Barbara

Orange County-SFO

Monterey-SFO

Portland-SFO

Burbank-SFO

Reno-SFO

Bakersfield-LAX

San Luis Obispo-LAX

Sacramento-LAX

Ontario-SFO

Las Vegas-San Diego

Fresno-SFO

Direct Flights Between Corridor Airport Pairs

# Flights per Day

156

122

87

65

60

56

54

52

48

48

46
t

41

36

36

34

34

31

31

31

30

3O

30



v

Commuter Aircraft Forecast

With the enactment of the Airline Deregulation Act of 1978, the restrictions on aircraft size

were relaxed significantly, and this, together with developments which have occurred in the nine years

since deregulation, has dramatically changed the character of the commuter airline industry. Initially,

deregulation accelerated the route rationalization programs of the large jet operators, opening additional

markets for the commuters. This resulted in dramatic growth in traffic and in the number of commuter

operators.

In fiscal year 1987, the growth of the commuter airline industry again outpaced the growth of the

larger commercial air carriers. Total revenue passenger enplanements increased by 13.3 percent to 27.2

million, while revenue passenger miles increased by 16.1 percent to 4.2 billion (Ref. 19).

As shown in Figure 5, revenue passenger miles are expected to total I 1 billion in 1999. Passenger

miles are projected to increase by an average of 8.3 percent per year over the 12 year forecast period (1987-

1999). In the 48 contiguous states, revenue passenger miles are forecast to total 10.4 billion in 1999,

with an average increase of 8.4 percent per year between 1987 and 1999. Traffic in Hawaii, Puerto Rico,

and the U.S Virgin Islands is forecast to show an average increase of 6.4 percent over the entire forecast

period, totalling 587.2 million passenger miles in 1999 (Ref. 19). t
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Figure 5. U. S. Regional/Commuters Scheduled Revenue Miles.
Source: FAA Aviation Forecast 1987-1999

Figure 6 shows that passenger enplanements are forecast to reach 57.9 million in 1999, more than

double the 1987 enplanements. Overall, passenger enplanements are expected to increase with an average

of 6.5 percent over the forecast period. In the 48 states, passenger enplanements are projected to increase

7.0 percent in 1988 and 6.5 percent in 1989, and with an average of 6.5 percent between 1987-1999,

totalling 52 million in 1999. In Hawaii, Puerto Rico, and the U.S Virgin Islands forecast to total 5.9

million in 1999, and averaging 6.4 percent over the 12-year forecast period.
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With deregulation and the relaxation of the aircraft size restriction, the door was opened for the

development and introduction of a new generation of aircraft designed specifically for use in commuter

markets. During the forecast period, the average number of seats per aircraft is projected to grow at an

annual rate of 3.1 percent, increasing from 20.1 in 1987 to 29.1 in 1999. The number of commuter aircraft

in the U. S. is projected to grow at an annual rate of 2.9 percent, increasing from 1604 in 1987 to 2252 in

1999. The average passenger trip length in the 48 states is projected to increase from 161.1 miles in 1987

to 200 miles in 1999, an average growth rate of 1.8 percent per year; while the average trip length for

Hawaii, Puerto Rico and the U.S. Virgin Islands is expected to remain constant at 98.0 miles over the
i

forecast period. The average load factor is expected to increase from 45.5 percent in 1987 to 46.8 percent

in 1999 (Ref. 19).

Figure 7 shows the percentages of commuter aircraft in size categories for 1987; aircraft with less

than 15 seats and between 15 and 19 seats accounted for 36.2 percent and 40.7 percent of the total fleet,

respectively. The number of aircraft with less than 15 seats is expected to decline from 36.2 percent in

1987 to 7.6 percent of the total fleet in 1999. The quantity of 15-19 seat aircraft category is expected to

decline from 40.7 percent tO 34.2 percent of the total fleet in 1999, which will still be the second largest

portion of the fleet; however, it is expected to keep decreasing after the year 2000 ('Ref. 19).
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Figure 7. 1987 Commuter Aircraft Categorized by Number of Seatl.
Source: FAA Aviation Forecast.

In Figure 8, the commuter aircraft sizes are shown for 1999. The largest growth in the commuter

fleet will be in the "20-40 seats" and the "greater than 40 seats" categories. In 1987, the "20-40 seats"

category had increased to 13.3 percent and the "greater then 40 seats" category to 9.8 percent of the total

fleet. By 1999, these two categories are expected to account for over 57.3 percent of the total fleet, 32.9

percent in the "20-40 seats" category and 24.4 percent in the "greater than 40 seats" category. During the

forecast period, aircraft in the "20-40 seats" category are expected to increase from 213 aircraft in 1987 to

714 in 1999, an average annual increase of 10.9 percent. The aircraft in the "greater than 40 seats" category

are expected to increase from 158 aircraft in 1987 to 549 in 1999, an average annual growth of 10.9 percent
i

(Ref. 19).
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Figure 8. 1999 Commuter Aircraft Categorized by Number of Seats
Source: FAA Aviation Forecast 1987-1999.

Airport Access

As was mentioned earlier, travel time may be more important to a commuter than cost in his

decision to use a transportation system. However, the speed advantages of air travel are often diminished

by the problems associated with access to the airport. These access problems can be dealt with by using an

integrated ticketing, transportation, and baggage-handling service, in which all components necessary to

make the door-to-door trip could be arranged by a single phone call. The Department of Transportation

believes that this type of system would even cost less than the present system (Ref. 6). The vast majority

of these air trips have been and will continue to be multi-modal; for example, a traveler might drive his

car to an off-airport parking lot and take a bus to the terminal. Advances must be made to improve the

speeds of these separate modes, or they must be eliminated. The poor connection between modes.remains a

major weakness of intercity service (Ref. 20). The air transportation system of the future should include

the following: more direct flights, greater frequency of service, origin-to-destination service, a high

degree of certainty as to. trip length, better intermodal efficiency, and a greater variety of charter services

(Ref. 6). The highest growth rate for air service will be in the "specialized" market such as air cargo and

passenger charter flights, and it is likely that these needs will be served by smaller aircraft (Ref. 6).
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Turn around time will be improved by use of advanced aircraft handling techniques such as drive-through

loading ports (Ref. 21).

Pollution Concerns in the California Corridor

Transportation is currently 97 percent dependent on petroleum; however, engineering and

geological factors indicate that the world's petroleum production will reach a plateau by the end of the

twentieth century (Ref. 22). The Global 2000 Report to the President-Entering the Twenty-First

Century stated "A world transition away from petroleum dependence must lake place, but there is still

much uncertainty as to how this transition will occur" (Ref. 22). The effects of fossil fuel usage on our

environment are extensive and could bring about grave consequences in the future. California's Air

Quality Management District (AQMD) estimates that air pollution costs the state 12 billion dollars a

year. Furthermore, even if current plans are carried through, the state will still be below current

minimum health standards (Ref. 23).

The levels of sulfur dioxide, particulates, nitrogen dioxide, and carbon monoxide in many of the

world's major cities are far above levels considered safe by the World Health Organization. Emissions of

nitrogen oxides and sulfur are especially of concern because they can combine with the water vapor in the

atmosphere to form acid rain, resulting in damage to lakes, soils, forests, and crops. The so-called "Green

House Effect" in which the carbon dioxide left after combustion leads to a warming of the planet, is

another feared problem created in part by the combustion of fossil fuels. The amount of CO2 in the

world's atmosphere has actually risen 15 percent in this century alone. Current trends indicate that the

CO2 content of the planet will double by the middle of the twenty-first century. The resulting warming

could eventually disrupt the world's agricultural system. The exclusive use of petroleum products makes

transportation much more vulnerable to disruption than other sectors of the economy (Ref. 20).

Any new transportation system for the California Corridor must be designed to be

environmentally sensitive. The vehicles used must, at an absolute minimum, create no more pollution

than the vehicles already in existence. Therefore, fossil fuels must one day be phased out of use.

Freight Transportation

Freight transportation accounts for about 40 percent of the capital spent on transportation. The

fast freight-moving business is one of the fastest growing in the United States. For this reason, a new

transportation system in the California Corridor should also consider hauling freight, especially in non-

peak traveling hours. In terms of total tonnage moved, about 18 percent is by pipeline, 21 percent by rail,

28 percent by truck, and 33 percent by water. Concerning the trucking industry, great controversy exists

as to how much pavement and infrastructure damage is actually attributable to trucks (Ref. 6). For

reasons such as these, it is hard to determine the true costs of moving goods.



v 23

TV

v

V

In National Transportation Trends and Choices Through 2000 (Ref. 6), the DoT concluded that

for a trip distance of 500 miles, a freight on!y, narrow-body container system costs twice as much, in

dollars per ton, as the most expensive method of trucking for the same distance. A wide body, lower-

hold container system in the belly of a passenger plane, on the other hand, costs 30 percent less than the

aforementioned trucking method. The DoT stated that "for containerized shipments moving in the lower

hold of wide body passenger jets, it has been impossible to separate the line haul costs from those incurred

in transporting the passengers, and these movements appear less costly than direct truckload(s)." This

information suggests that, rather than incorporating an individual subsystem for handling freight within

the Corridor system, it would be more economical and cost effective to have a system which is capable of

hauling cargo with passengers. The DoT concluded by saying that there were numerous areas where

technological innovation was likely, "but none had such large scale implications as the potential changes in

rail,"

Financing Transportation in the California Corridor

Obviously, financing is an integral part of any transportation system. However, one of the

complexities is that there is not one absolute plan to fit all systems. Any proposed system is a unique

time/place phenomenon which must be dealt with on an individual basis. Perhaps the major problem with
!

trying to determine a financial plan for a transportation system in the California Corridor is deciding

what that system will be and what level of service the system will address.

For any transportation system, the word "financing" is a multi-dimensional term. Many variables

come into play, such as the identification of the potential users of the system, the type of socio-economic

development in Which the system is to be situated, who or what will administer or manage the system,

and the modes of transportation the system will utilize. Other factors include the size and extent of the

system, and the factor of risk in recovering the initial costs of the system.

With any given system, while it might be possible to generally determine where the funding

might come from, it may not be possible to accurately determine the cost. For example, an air system

that proposes a new kind of aircraft to service general aviation and large hub airports perhaps need only

consider upcoming trends in aircraft technology, air traffic control, and enplanement projections. This

would be a conservative plan. A financial study might concentrate on how much it will cost to acquire

new aircraft and improve existing facilities. One of the major projections for the upcoming century does

not show much new construction of airports of the existing type (Ref. 19), and there is only a relatively

small part of the total population that sees a need to fly between the points determined by those airports.

In this conservative air system (conservative because the systems they expound are generally the

current state of affairs), ground transportation would probably be left to its own devices, and separate

financial planning on the land side might center around the more conventional aspects of subways, light
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rails, and high occupancy vehicles (HOV). In this area, much literature exists to help determine levels of

ridership and fares. References 24, 25, 32, 26, & 28 were produced by the Urban Mass Transportation

Administration (UMTA) and the Department of Transportation for use by planners attempting to

determine such factors as speed, capacity, labor costs, system operating costs, energy consumption,

pollution, capital costs, and accident frequency, and their effects upon a proposed ground transportation

system.

In a less conservative case, such as an integrated VTOL/HOV system that proposes neighborhood-

to-neighborhood service, financial planning would have to incorporate and mesh together aspects of both

the air side and land side. Data to help generate this financial model is scarce, since not only is this type

of association rare, but the VTOLs in this case might be tilt rotor or tilt-wing vehicles, which are

relatively new technologies that have not yet lent themselves to passenger operations (Ref. 29).

In the business of air travel, time is the commodity that is for sale, not that the customers can

purchase even a moment of it. Rather, they may utilize more of the time they have in some pursuits other

than travel. In this way, time of travel is the primary consideration. The public desires flights that leave

when they want to leave and arrive at their destination quickly. It is generally believed in the airline

business that the frequency of flights is more important than the cost. Indeed, the customer will usually

first ask what flights are leaving at his desired time of travel and then ask which of these are the least

expensive.

There are three basic methods of financing and operating the transportation system that will be

investigated in the California Corridor Study. The first is to have the entire system financed and operated

by the state government. The second method is to have the government fund the system and contract a

private enterprise corporation to administrate it. Last of all, the entire organization could be completely

owned and operated by private enterprise.

Creating and installing a comprehensive transportation system to serve the needs of the California

Corridor in a short time period would take an enormous amount of capital. The transportation entities

already in place that are even close to the size of the Corridor system (the major air carriers) did not

spring into being overnight; they grew into the size they are now. Smaller entities that did come into

being in previous years (mass transit systems in urban areas) have all been state and federally funded.

Thus, the logical path for funding the Corridor system would be to get governmental support.

The funding could come from a bond issue and federal funds for mass transit. Getting the bond

issue to pass would not be that difficult, since the ratio of pass to fail of bond issues in this decade is

twenty five to two. The key to getting the bond issue passed is to have the system attractive to a wide

base of Californians. Voters would be likely to vote for this if they can see themselves using the system,

and the proposed system could be used by all Californians.

Criticisms of public sector bureaucracies have been leveled at the inefficiency and rigidity, at the

lack of incentives to reduce costs or improve performance, and at the political tendency to retain and
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expand programs regardless of cost-effectiveness. The private sector can avoid these problems because of

the discipline and incentives of the marketplace. The market encourages competition and risk-taking and

rewards good ideas through profits. Pricing allocates resources and tailors services to meet consumer

demand. Local government experience indicates that competitive contracting may cut costs from 20 to 50

percent, while maintaining or improving service (Ref. 4).

The actual operation of the system could be contracted out to the private sector since privately

run operations are consistently more economical than their governmental counterparts. Government

owned privately run entities are successful today, (nuclear processing is one example). If the system

establishes itself as a profitable venture, it could go completely private, thus freeing itself of

governmental control.

Travel Into The Twenty First Century

The National Transportation Policy Study Commission (Ref. 20) concluded that changing

demographic trends will further increase the demand for travel in the future. These trends include: 1)

expansion of industries and occupations with high travel potential, such as service industries and white

collar occupations; 2) increased affluence and more leisure time, stimulating pleasure travel and tourism;

3) changing age distribution, meaning more persons in high-travel-potential age groups; 4) having fewer

dependants, allowing more time and disposable income for travel; and 5) the rising relative affluence

abroad increasing tourism to the United States, and creating new demands on the intercity system.

The State of California is predicting that the growth of the suburbs will continue because of the

desire to live in affordable, lowdensity housing (Ref. 16). The process of suburbanization in the nation's

sun belt is mainly one of increasing the square miles that need to be served by transportation, rather than

increasing the population. Across the country, even areas of declining or slow growing population are

still showing an increase in commuting. For instance, Washington D.C. experienced a 5 percent

population gain from 1960 to 1980, yet gained 24 percent more commuters. Buffalo lost 8 percent of its

population at the end of the 1970's, but still gained an increase of 1 percent in commuter traffic (Ref. 30).

Present day commuting also tends to be suburb-to-suburb, as well as the traditional suburb to city center

travel. In California, the land-area expansion is coupled with a huge population growth (Ref. 6).

In the year 2010, California's transportation system must also be ready to serve the state's aging

population. Many younger people have left the rural areas to live closer to the city center. This has

created a situation in which the remaining older population has a mobility deficiency. They are dependant

on public transportation. Studies have been conducted that indicate that the teen-aged, the old, and those

in lower income brackets have a large, yet unfulfilled, demand for transportation. To reach these

potential customers, the price of service must be brought down (Ref. 6).
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v
In summary, the California Corridor of the year 2010 is a wide open market. All phases of

current transportation are breaking down while the demand for transportation is growing at an

unprecedented rate; therefore, many different types of systems could succeed in the Corridor. As freeway

congestion is moving average speeds downward toward 7 to 15 miles per hour, alternative transportation

systems are required. Such systems, due to the increased congestion, must address the concept of "door-to-

door" service. In addition to the ground traffic problem, air traffic at the major California airports must

be reduced or relocated because the major airports in California are already operating near capacity. The

Corridor system should address all areas of transportation within the corridor such as mail, freight,

tourism, and commuter transportation. In general, the system must be more convenient, more

economically feasible, and cleaner than currently operating systems.
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One of the major factors utilized in the design of a transportation system and the determination

of vehicle characteristics required is the demand for travel in the area under consideration. In California,

this demand is generated by various types of travelers; business commuters, major airport feeder traffic,

tourists, people making trips required in daily metropolitan life, and so on. Various political, socio-

economic, and geographical factors affect the amount of travel generated by the population in any specific

area. For example, the income level would determine the public's ability to pay a certain fare and

consequently the propensity to take that particular trip by a specific mode of transit. Alternatively, a

river that runs down the middle of a city would serve to assure adequate travel on a bridge spanning that

river or a ferry providing service to cross it. Demand is generated in cyclical patterns varying by seasons,

day-of-week, time-of-day, etc., with peaks and valleys in the curve of demand versus time. Commuters

would tend to be in transit daily in the mornings and evenings while tourists flock to certain areas during
i

the favorable seasons in the year.

To design an air travel system in the California Corridor in the year 2010, a forecast of travel

demand was required. There were two uses envisioned for these demand figures: validation of any specific

system by checking whether the demand model prediction is within the system's required operating range

and determination of the basic parameters, such as range, speed, and capacity, of any vehicles utilized in the

system. The demand model was not required to supply information with adequate detail to set up routes

and schedules of the vehicles, because this step would not be performed in the preliminary design of the

system. Instead, numbers that represented an overall average of the travel demand from a macroscopic

viewpoint would suffice. Therefore, the patterns of travel due to commuters, tourists, business, and other



- 3O

types were not separated. The cycles in the demand curve were not scrutinized because it was assumed that

demand was homogeneous over time and that the predicted demand would be equivalent to a time average.

Since the primary purpose was to design a system of transportation by air, the demand model was to

concentrate on acquiring data that related to air travel demand in the California Corridor.

V

Gravity Model

The model chosen to forecast demand was a travel generator model known as the Gravity Model.

Such a model calculates the demand between two cities based on the populations of the two cities and the

distance between them. Certain other characteristics such as average income of a city and the change in

population and air travel in recent times were also included in the model. Other factors such as

attractiveness of a city, geographical conditions, and climate were not used because, in California, these do

not represent major boosters or dampeners of travel, and would not make a significant change in the coarse

approximation numbers generated. These numbers can be considered to be time averages of the demand

curve and therefore typical of any time in the year, week, or day. It is important to recognize that the

numbers represent the best estimates of one way air travel demand between city pairs in the California

Corridor.

The Gravity Model is based on the principle :that the traffic demand between two plopulation

centers is proportional to the product of their populations and inversely proportional to some power of

the distance between them. This model was originally postulated at the Massachusetts Institute of

Technology (Ref. 1). Lockheed-Georgia Company expanded the model to include the income of origin in

order to reflect the capability of the passengers to travel and the attractiveness of destination to show the

desirability of travel (Ref. 2). An adjustment was made to the model at the Georgia Institute of

Technology (Ref. 3) to reflect the rapid increase in air travel as compared with population and to dampen

the demand for very short flights because of the model's inverse proportionality to distance. This

modified gravity model was the one used to generate air travel demand and forecast it for the years ahead.



Geographical Set-Up

Instead of finding the demand between airports, it was more desirable to obtain the demand

between centers of population. The counties that comprise the metropolitan areas in the California

Corridor were combined together. The txavel generated in these centers comprises more than 95 percent of

the total travel in the California corridor. Therefore, by using these fourteen "cities," the demand model

effectively covers the entire area under consideration. The following is a listing of the counties included

in each area:

San Francisco:

Los Angeles:

San Diego:

Sacramento:

Fresno:

San Luis Obispo:

Bakersfield:

Redding:

Santa Barbara:

Monterey:

Portland, OR:

Rent, NE:

Las Vegas, NE:

Phoenix, AZ:

Sonoma, Marin, San Francisco, San Mateo, Santa Clara,

Alameda, Contra Costa, Solano, and Napa Counties

Los Angeles, Orange, Ventura, San Bernardino, and
Riverside Counties.

San Diego County

Sacramento, San Joaquin, Volt, and El Dorado Counties

Fresno and Madeira Counties

San Luis Obispo County

Kern County

Shasta Co_ty t

Santa Barbara County

Monterey and Santa Cruz Counties

Multnomah, Clachamas, Washington, Vamhill,
Columbia, and Marion Counties

Storey, Lyon, Douglas, and Washoe Counties

Clark County

Maricopa County

Model Implementation

The procedure followed in implementing the model on computer consisted of three main' steps: 1)

entering the program and debugging it for a successful run, 2) collecting data for the input to the

program, and 3) calibrating the model to apply to California. The program listing was acquired from the

Georgia Tech. report (Ref. 3). This FORTRAN program was entered and executed. Extensive debugging

was required because of errors in the original listing. Changes were also made to make the program apply

to the current system area and time periods. The output format was altered to suit desired needs. The

information required as input to the program includes population for the last two census dates, latitude

and longitude of the city center, average city income, and percentage change in air travel demand. The

population and income information was obtained from Reference 4. The latitudes and longitudes were
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acquired from Reference 5. The percentage change in air travel was available in Reference 6. Once this

data was input and the program was running, output was generated in the form of a grid with the cities as

rows and columns and containing the distance and one-way air travel demand between city pairs at cross-

grid connections.

Model Calibration

There remained the additional step of calibrating the program to adjust for California's actual air

travel scenario. In the modified gravity model equation, there are three arbitrary constants that relate to

the proportionality of travel to populations and distance, the effect of distance, and the dampening of

demand in short flights. These are to be empirically derived from actual data. Since the task was to find

air travel demand, then the model output portion for the present time needed to be matched with a set of

numbers acquired independently that were representative of actual air travel today. The actual data was

acquired for the year 1988. Information on the number of flights between city pairs was acquired from

cumulative airline flight schedules for 1988, which lists all airlines flights in the Corridor. To calculate

the actual passengers per year traveling one way between a city pair, several math operations were

performed on basic information available. The actual enplaned passengers per year divided by half the

annual operations per year in all airports in a certaii_ /netropolitan area (Ref. 6) yields actualtpassengers

per departure. This result multiplied by the flights per day one-way between a specific city pair gives

actual passengers per day traveling one-way between that city pair. Using 365 days per year, the upper

bound on the actual travel can be estimated. Alternatively postulating that there are six effective air

travel days per week to account for weekends and holidays, it can be said that there are 312 days per year

where air travel is concerned. This would yield the lower bound on actual travel. The product of actual

passengers per day multiplied by the days per year, either 312 or 365, is the actual passengers per year

traveling one-way between a specific city pair. To summarize:

Actual Enplanements per year
.................................

1/2 x Operations per year

One-Way Flights Days Passengers
.................. X ..... _--- ............

Day Year Year

These arithmetic operations performed repeatedly for a few sample city pairs gives a set of

numbers to be used for the calibration of the demand model. These figures were compared with the

demand model output for the 1990 because this was the time period closest to 1988 in the quantized

output from the program. It was assumed that due to the coarse quality of the calibration, the small

discrepancy in the years will not present a significant problem. Table I shows the comparison between

actual air travel and the final output from the demand program for a sample set of city pairs. The

numbers from the output are the final results after calibration by working with the empirical constants.
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Table I. Actual Air Travel vs. Demand Model

Actual Travel (1988) Demand Model

City Pa!r. 312 days/yr 365 days/yr Passengers/yr (1990)

1. L.A.-San Fran. 5,474,040 6,403,040 6,374,556

2. Sacr.-San Diego 124,800 146,000 117,646

3. Sacr.-Fresno 46,800 54,750 45,944

4. Sacr.-S.L.O. 18,252 21,352 13,633

5. Sacr.-Monterey 34,570 40,442 34,134

6. San Diego-Fresno 47,736 55,845 48,280

7. San Diego-S.L.O. 9,360 10,950 10,938

8. San Diego-Santa Barb. 28,080 32,850 29,415

9. Fresno-L.A. 624,000 730,000 450,411

10. Bakersfield-L.A. 218,400 255,500 169,984

11. San Diego-L.A. 2,004,912 2,345,490 450,145

12. Santa Barb.-L.A. 217,433 254,369 124,479

13. Phoenix-L.A. 1,760,304 2,(J59,330 744,218

14. San Diego-San Fran. 1,451,175 1,697,688 627,333

15. Sacr.-San Fran. 953,971 1,116,024 247,465

16. Monterey-San Fran. 320,112 374,490 96,579

17. Santa Barb.-Fresno 3,120 3,650 12,509

18. Bakersfield-Fresno 3,120 3.650 7,859

19. Bakersfield-Sacr. 24,960 29,200 46,530

20. Redding-San Fran. 20,592 24,090 45,560

Table I shows three types of correlations between actual travel and demand model output

numbers. The first eight sample legs show that the model output, which can be considered to be natural

demand, is close to, or within the range of actual travel. The next eight city pairs give an actual travel

that is much higher than the natural demand predicted. The last four pairs give an actual travel that is

significantly lower than the natural demand. Considering the state of air travel in California today, two

existent phenomena, hubbing and stunted service, can be used to explain the discrepancies noted. The

reason for actual travel to be much higher than natural demand would be if one of the cities is not the

initial origin or final destination, and is instead being used as a hub. This would be the case if the travel

was between a small or medium sized city and a large metropolitan area. Obviously, Los Angeles and San

Francisco are the acting hubs and the other cities such as Fresno, Santa Barbara, San Diego, and Sacramento
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are the smaller "feeder" cities. This meshes with what is known to be the case existing in California. The

case of actual travel being much lower than the natural demand can be explained by the phenomenon of

stunted service. The carriers providing intrastate air transport in California have set certain numbers of

flights for many legs between city pairs of small or medium sized cities. This restricts air travel

available to well below the predicted demand. This level of service is usually set because the airlines find

that actual demand warrants only that amount. The difference between predicted demand and actual

demand is then occurring because of factors such as the public's propensity to drive (especially in some

remote areas), ease of driving, etc. These factors were not included in the demand model and consequently

throw it off in these areas.

In retrospect, it can be seen that the city pairs that had a good match between actual and natural

demand were in fact free of the phenomena of hubbing or stunted service. The Los Angeles to San

Francisco leg does not require hubbing because both have major airports in the area and have adequate actual

demand for the connecting service to exist to full potential. The connections between cities of medium

size such as San Diego, Sacramento, Fresno, Monterey, and Santa Barbara have no hubbing activity because

none of these cities are hubs and have service matching full potential. These can be considered to be "true"

legs because they are free of the two discrepancy causing situations. It is well that the demand model

shows good correlation with actual travel for these "true" legs. After considering the hubbing activity

and the stunted service, it is evident that the demand model has an overall good representation of real

world air travel. If the corridor air transit system is implemented as envisioned, it would eliminate the

hubbing activity between cities and replace it with its own types of travel. Also, the system would set

the actual service based on demand and economics and reduce the phenomenon of stunted service.

Consequently, the demand model would yield an an even closer match with the actual travel scenario

existent after system implementation. The forecast numbers in the output would then be representative of

all parts of the corridor and can be used to ascertain many aspects of the system. Therefore, it can be said

that the demand model stands calibrated and is valid for use as a tool in system and vehicle design.

The input and output data from the use of the program in this system design are included in

Appendix. The program listing is given in Appendix. Table II provides an excerpt from, the complete

output information provided in Appendix. It gives the total air travel one-way from each of the 14 cities

in the California Corridor for the years 1990 and 2010. Figure 1 is a graph of the cumulative percentage

of travel in the entire corridor as related to distance. It provides a visual aid in determining the optimum

range for a vehicle making direct flights between the cities in the area.
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Table II.

City

San Francisco

Los Angeles

San Diego

Sacramento

Fresno

San Luis Obispo

Bakersfield

Redding

SantaBarbara

Monterey

Las Vegas

Reno

Phoenix

Portland

Total

Excerpt from Demand

Total One-Way

1990

9,181,493

10,843,806

1,498,924

1,994,017

909,231

205,132

586,254

149,844

516,056

693,697

390,382

t22,288
1,535,106

1,033,043

14,829,635

Model Output

Air Travel Demand

2010

17,463,182

19,385,346

1,638,386

3,660,600

1,668,697

329,702

1,153,653

219,721

1,053,850

1,132,851

308,934

67,030

1,531,894

740,940

50,354,786

==.



--- 36

V

v

_4D

I=

¢J
i,,,,

la,

,u

E

_J

1.0-

0.4

0.2

0.0

0

Forecast Year 2010

J

I I I I l

100 200 300 400 500

Distance (Miles)

V..j

t,/

v

Applications

Figure 1. Marginal Demand vs. Range

The following examples illustrate a few ways of applying the information available from the

demand model in the design of a system. The Los Angeles metropolitan area is approximately 60 miles by

60 miles or 3600 square miles. If the level of service set for a VTOL aircraft dictates that vertiports be,

at most, 5 miles away from a passenger's initial origin point, then the area of service of each vertiport

would be equal to the area of a circle with a radius of 5 miles extending from the port. Each vertiport

would then cover about 80 square miles. To serve the entire L.A. area would require 45 vertiports. In

order to place this number of vertiports in the metropolitan area, it would be unavoidable to locate some

of them in "bedroom" communities. It would also be desirable to place them close to residential areas to

provide a more door-to-door type service. The noise guidelines in these zones are quite stringent and

would play a major role in system design. We see from noise calculations that such a location would

allow up to 44 departures a day with the following breakdown:
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Category Time x Depart/Hr = Departures

Peak 4 x 3 = 12
Base 8 x 2 = 16

Evening 4 x 2 = 8
Night 8 x 1 = 8

Total 24 44

Using the analogy that a chain is only as strong as its weakest link, it can be said that this

"bedroom" community vertiport would be the representative port used in further calculations since it

would operate in the most restricted environment. By looking up total one-way air travel per year from

Table II, it can be seen that L.A. is forecasted to have 19,385,346 enplanements per year for the year 2010.

Assuming that there are effectively six days of travel per week, because of weekends and holidays, yields

312 travel days per year. Using a homogeneous distribution of travel between all 45 vertiports, and

going through the following math step, the enplanements per day at each vertiport is achieved.

19,385,346 enplan. 1 year L.A. Area 1330 enplan./day
.................... X ......... X ............ _ ...................

1 year 312 days 45 vports vertiport

Now, utilizing the characteristic vertiport and the number of departures allowed per day by noise

restrictions, it can be calculated that there are will be 31.4 enplanements per departure. By designing the

VTOL vehicle to be 40 passenger capacity, we would be attaining an average load factor of 87.5%. This is

a high load factor, and is desirable because it would yield a good profit margin for the system.
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One of the proposed systems for providing transportation in California is one that utilizes a

central hub located near Kettleman City in the Tulare Dry Lake area. In order to calculate either the range

required or a standard stage length for the vehicle to serve this hub, the following procedure can be

followed. The distance from each of the cities to this central hub (to be introduced later as the Corridor

Access Port (CAP)) can be determined. Multiplying the distance with the respective enplanements from

each city from Table II, adding all these together, and dividing by the total travel in the entire area gives

a weighted mean distance. This mean distance reflects the demand from each city. Therefore, it is much

more representative of the trip length being flown by the vehicle in each one-way trip to or from the

CAP. This mean distance can be considered to the stage length of the vehicle serving the hub system. The

numerical calculation for this particular case follows:

City Distance to CAP x To_d Enplanements = Product
( naut. miles) per year

San Francisco 135 x 17,463,182 -- 2.358 x 109

Los Angeles 126 x 19,385,346 = 2.443 x 109

SanDiego 206 x 1,638,386 = 3.375 x 108

Sacramento 146 x 3,660,600 = 5.344 x 108

Fresno 35 x 1,668,697 = 5.840 x 107

San LuisObispo 46 x ' 329,702 = 1.517 x 107

Bakersfield 52 x 1,153,653 -- 5.999 x 107

Redding 255 x 219,721 -- 5.603 x 107

Santa Barbara 81 x 1,053,850 = 8.536 x 107

Monterey 84 x 1,132,851 = 9.516 x 107

Las Vegas 200 x 308,934 = 6.179 x 107

Reno 181 x 67,030 = 1.213 x 107

Phoenix 360 x 1,531,894 = 5.515 x 108

Portland 499 x 740,940 = 3.697 x 108

Total 50,354,786 7.037 x 109

Mean Distance to CAP =

7.037 x 109 enplanement-n, miles / 50,354,786 enplanements

= 139.75 n. mi.

It follows that, for the central hub concept, the stage length could be estimated to be 140

nautical miles. Figure 2 shows a graph of the above numbers. It can be seen in the figure that there are

three peaks. The peaks around 200 n. mi. and 350 n. mi. would tend to pull the mean value a little to the

right of the main peak that is around 120 n. mi. Therefore, a mean value of 140 n. mi. is acceptable by

visual verification.
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Using the demand model output along with other information such as noise restrictions and cost

analysis, many aspects of the system and vehicle can be determined. Among the many characteristics that

can be derived are such things as cities to be served and routes to be flown, coarse approximations of the

number of terminals and vehicles, the required range, speed, and capacity of the vehicle, and rough

estimates of schedules. In turn, these specifications can lead to system trade-off criteria such as total

system cost, block time, and user convenience.
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FUTURE OF AIR TRANSPORTATION

Since the deregulation of the late 1970's, the demand for airline transportation has _own to the

point that existing facilities have reached their capacity limits. The airport facilities that still have

additional capacity available are limited by noise constraints. Despite this, mechanisms must be found that

will allow the expected doubling of the demand for air travel in the year 2010. Furthermore, a new class

of flight vehicles is expected to be operational at this time. These include: tilt rotors, supersonic

transports (SST), hypersonic transports (lIST), and high capacity aircraft. A means to accommodate and

intelligently employ these new modes of travel is needed.

The f'Lrst means of dealing with the future that were explored were to use only existing facilities,

yet move a larger number of passengers. It has been estimated that the number of conventional aircraft

able to land at Los Angeles International could be increased by as much as 15 to 20 percent using advanced

technologies. This increase is an option, but it intensifies the problems such as noise associated with
; t j

airports and does not in and of itself come close to solving the total problem.

The concept of using high-speed hovercraft to provide a means of landing the aircraft at sea and

then transporting them quickly to the on-shore airports was also evaluated. It would be possible to

develop computer controls to position and control the path of these vehicles under these conditions,

though. The safety problems associated with this would be unquestionably great. Furthermore, research

was done to determine the feasibility of such a hovercraft. It would take an enormous amount of power

to operate such a large hovercraft. The speeds necessary to perform this function are beyond the capability

expected for hovercraft in the year 2010.

v,..
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Another proposed solution was to build new conventional airports as close to population centers

as possible. The most prominent of the attempts to accomplish this is the planned Palmdale International

Airport (PMD). The Palmdale International airport plan illustrates one of the problems that attempting

to locate a new, major airport near a population center might encounter. At the time PMD was planned,

Palmdale was a tiny community. Today, because of skyrocketing land costs in the Los Angeles Basin,

many commuters have chosen to live in Palmdale where they can find affordable, quality housing, and then

commute about one and one-half hours to their place of employment. This trend has made Palmdale one

of the fastest-growing cities in the state. Placing a major airport into such an environment would only

delay the problem for a short time. It might also involve a highly contested political fight.

Another option involving the building of new facilities is the construction of two new hubs in

the State of California. One would be located in Southern California, accessible to the Los Angeles area,

and the second would be situated as near as possible to the San Francisco Bay. The first problems this

proposal encounters are that the closer these hubs are to the major cities, the land is likely to become more

expensive, and the opposition tends to be more fierce In locating the Southern hub, the logical procedure

is to start at Los Angeles' center and proceed out in every direction in search of a viable location. Ontario

may appear to be the first likely possibility. Ontario is in fact an International Airport with room for

further expansion. Ontario International is also already on the list of California's ten foremost noise
-. _ [.

'L.

problems. In the San Francisco Bay Area, due to strict land use regulations and expensive real estate

prices, there is little chance of finding a suitable location for a major airport.

Two locations where land could be made available for hubs are Mather and George Air Force

Bases, which the Air Force will be closing soon. Mather AFB is located adjacent to Sacramento, which

casts doubt on the use of Mather due to possible noise and congestion problems. George AFB is ideal in

that it is located away from the metropolitan areas, however, it is not expected that a large scale airport

could be located only forty miles from Edwards Air Force Base. It should be remembered that the closer

these sites are to the cities the more likely it is that travelers will drive there rather than use other forms

of transportation.

Jim Sheppard of the Federal Aviation Administration in Orlando, Florida has proposed the

Wayport concept as a solution to future air travel demand. The Wayport would be a large multi-purpose

airport located well away from congested airspace. It would not be an origin or destination for any

traveler. Instead, passengers could make transfers and catch connecting flights there. The Wayport would

also serve as a major hub for express and cargo companies. The remote location of the Wayport would

eliminate many of the problems with the building of major new airports such as noise, air space

congestion, need for additional roads and highways, environmental impact, infrastructure, political

concerns, high cost of land acquisition, and reduce the delays at airports which cost consumers 3 billion

dollars a year (Ref. 1).

r...
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A trade-off study was conducted on the merits of a two-hub system versus a variant of the

Wayport concept. For travel within the corridor, a passenger would have to make more vehicle transfers

with the two-hub concept, resulting in greater passenger inconvenience and an increased chance of delays as

compared to the Wayport. The land costs of the Wayport would be lower and noise would not be a

problem due to the remote site. Other costs could be made lower in the Wayport concept since each

facility would not have to be duplicated as it would with the two hub concept. Also, by virtue of its

remote location the Wayport could be designed to easily expand to meet future demand.

The distance chart shown in Table I demonstrates another useful comparison between the two

concepts. To reach their respective hubs in the two-hub system, the residents of Los Angeles and San

Francisco must face either a long drive, or an addition mode change should they chose to fly to the hub.

Once they have completed this trip to the hub they would have covered most of the distance it would have

taken to get to the Wayport location. The fact that the Wayport is further from the customers' point of "

origin would discourage travelers from driving there, thus decreasing congestion, and encouraging the use

of alternate modes of transportation. For out-of-corridor travel, the Wayport concept is clearly superior

for air carriers due to the ability to centralize flights at one location, and thus provide higher load factors

on all aircraft. The Wayport concept is greatly enhanced through its situation in a travel corridor, for not

only is the demand for airport usage coming from long-distance traffic, but it is also coming from the
"- _. 1.

high demand of the corridor itself. For these reasons, _t was decided that a variant of the Wayport concept

would be the best means of coping with the future increase in the demand for air travel in the California

Corridor.

r_d
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Table I. Distances to Corridor Access Port

From Distance to George AF_ Distance to CAP

Los Angeles 67 148

San Diego 113 232

Las Vegas 141 230

Bakersfield 93 53

San Luis Obispo 201 58

From Distance to Mather AFB Distance to CAP

San Francisco 76 158

Reno 91 213

Sacramento 5 174

Fresno 129 48

San Luis Obispo 201 58
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CALIFORNIA CORRIDOR AIR TRANSIT SYSTEM

The California Corridor Air Transit (CAT) system will be a competitor in the new

transportation opportunities created by the Corridor Access Port (CAP) and other factors in the year

2010. Electric CTOLs, "magnetic levitation trains, and tilt rotors are the primary vehicles that will make

up the CAT system. These vehicles each will have their portion of the market allocated by the consumer's

demand for various levels of service and price ranges. Furthermore, there is a link between the rail and air

transport vehicles. Air transportation tends to accelerate the development of a region, leading to the

development of a demand density that may warrant an investment in rapid rail transit (Ref. 1).

The electric CTOL is the main component of the first phase fo the CAT/CAP implementation

plan (see Cal Poly ECTOL). This advanced airplane design features low pollution and noise compared to

existing aircraft, and thus is predicted to be more readily accepted by airport communities. It will use

existing airports which will allow rapid implementation of the aircraft, and little initial cost since there

is no need to create new landing sites or build tracks. The ECTOL fleet is planned to provide inter-city,

airport-to-airport service initially, slowly phasing out the smaller, conventional passenger planes. Also,

since it will be operating while the CAP and magnetic levitation trains (Mag-Lev) are under construction,

it will provide a source of income to help offset the expenses. When the CAP is completed, the ECTOL

will merge with the tilt rotor and the Mag-Lev in order to handle the predicted passenger traffic demand

of the CAP. The ECTOL will also continue to serve those areas desiring direct airport-to-airport service.

The Mag-Lev will be another important component of the CAT system. Plans for a high speed

rail system have already been proposed through California's Central Valley. Interfacing with the CAP

makes such a project even more promising since ridership of this train would be made up not only of those
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traveling point-to-point along the train route, but also includes those who whish to transfer at the CAP

to a domestic or international airport.

Both the ECTOL and the Mag-Lev will require secondary modes of transportation such as cars,

buses, and commuter trains in order for passengers to reach the nearest terminals if their home, place of

work, or other origin/destination is not next to one. The tilt rotor system (Wildcat) will decrease this

need by providing terminals closer to the areas of highest demand. This is due to the ability of the

Wildcat to takeoff and land vertically, and thus requires less space for a terminal. With this advantage

and the low noise and pollution of this advanced technology tilt rotor, Wildcat terminals can be built in

residential areas, commercial roof-tops, shopping center parking lots, recreational areas, and other places

where near door-to-door service is desired. Funding and approval of a terminal could be accomplished

locally; if a community or business wishes Wildcat service, all they need to do is to build their own

terminal, define an operating schedule that they desire, and the Wildcat will serve it. This eliminates the

communication problems caused by flying into an area where the Wildcat is not appreciated or operating

while residents are sleeping because the residents decide whether they want it, and they define the

schedule.

The Wildcat will serve two markets: city-to-city, and direct flights to the CAP. The city-to-

city service is defined as hops of greater than 40 nautical miles due to the less cost efficient operation of

the tilt rotor below this distance. This service will fly between Wildcat terminal pairs only if the

demand is sufficient for near door-to-door service between the two areas. Interfacing with the CAP will

allow a level of tilt rotor service unsurpassed by solely point-to-point transit. The CAP serves as a mode

sorter in that persons from a given location are able to easily make connecting flights to other parts of the

corridor as well as interstate and international flights. This allows for higher load factors to be obtained

on VTOL aircraft at each vertiport. Take, for example, a businessman from Santa Ana in Southern

California who desires to travel to Palo Alto in the San Francisco Bay area. The demand for this route

would probably not be sufficient to warrant a direct flight, but because of the CAP, travelers Santa Ana

bound for many destinations could all board the same tilt rotor. Once in the CAP the businessman could

quickly board another tilt rotor bound for Palo Alto along with others arriving from all-around and

outside the corridor.

The intra-urban market is the demand for air transportation that originates and ends within the

major metropolitan area. In the past this role was filled with partial success by the helicopter. These

services have met with many problems. Foremost is the prohibitive cost of such transportation.

Currently, a chartered helicopter trip from Los Angeles to Palm Springs, California would cost about one

thousand dollars. One could by a ticket to London, England for that amount (Ref. 2). Other problems

that have plagued this industry are public rejection due to noise and lack of vertiports (Ref. 3). It is

predicted that the use of tilt rotor technology may be able to overcome many of these technical

difficulties (Ref. 4). Present predictions show, however, that the tilt rotor will not be as cost effective
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as ground transportation for distances under 40 nautical miles. This limitation may become almost

negligible, though, as ground transportation becomes increasingly congested, and the cost of time wasted

in transit exceeds the additional expenses incurred by the short distance flights. At this point, passengers

may be willing to pay a little extra for intra-urban hops to save time. Whether the Wildcat serves this

market will be determined by the demand for it.

The California Corridor Air Transit system will be a completely integrated system. An

important means of implementing this is to supply travelers with CAT-system ID cards. These cards

will not only be used for purposes of identification but will allow the traveler to quickly access the

system and be automatically billed for the trip. Baggage will be linked with the ID card, and thus can be

checked in at the beginning of the trip and picked up at the end, no matter how many transfers are made in

the system.

Air Traffic Control

The VTOL ports in the metropolitan areas will handle less concentrated traffic flow than the

Corridor Access Port, but due to the close proximity of homes and businesses, safety must not be

compromised.

In order to accommodate this system with maximum safety, all aircraft operating in California

airspace would be required to have sophisticated electronic avionics. It is predicted that this type of

requirement would face stiff political opposition. Currently, there are approximately 262 thousand

members in the Aircraft Owners and Pilot's Association (AOPA), a politically active club that has many

lobbyists working in the state and federal government sectors. In the past, they have successfully

influenced the legislation of various bills dealing with the flying environment, and acted as advisors in

many committees. Examples are the winning of a court case against discriminatory airport usage fees in

Chicago (penalizing smaller airplanes using the airports due to smaller number of passengers) and airplane

equipment requirements, such as mandatory mode C transponder installation (the government is now

requiring installation in a stepwise-time scale instead of all at once) (Ref. 5). Their position is generally

against new legislation which may hinder their freedom to fly. Since many pilots (from students to

airline pilots) and aircraft owners are members of this organization, AOPA's views cannot be overlooked.

Secondly, the installation of automated equipment into existing aircraft will be an additional cost

that aircraft owners may balk at. There is also the problem that many general aviation (GA) aircraft may

require extensive modification in order to be fitted with such a system since they were never designed to

have them.

In the interest of public safety, government agencies may be able to implement this equipment

requirement for operation within the CAT area, and thus exclude all non-automated aircraft (NAA) from

the area. This would provide optimum safety within the area, but the flight restrictions thus created for
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the NAA would be severe. There would also be much resistance by the NAA owners due to the necessity

of having to relocate their aircraft bases elsewhere. Satellite NAA airports on the outskirts of the system

with free travel allowance within the CAT area for the NAA pilots may alleviate some of the

inconvenience, but would also increase congestion in the outlying area, not to mention require another

move if the CAT was to expand into that area.

At the other extreme is no automation except for the CAT aircraft. This option is not feasible

due to the system design in terms of safety considerations, strict scheduling, and all-weather operation

requirements. The primary safety obstacle is that the non-automated aircraft (NAA) add a random factor

into the aircraft separation scenario. For example, if a NAA strays into the path of a CAT shuttle, the

shuttle will have to deviate from its course, perhaps abruptly, in order to avoid collision. If by chance,

the NAA attempted to do the same, but instead turned toward the shuttle's evasive path, collision may

still be eminent, and perhaps now unavoidable. In the proximity of a terminal where aircraft are arriving

and departing, this factor is even more critical due to the reduced maneuverability of arriving/departing

aircraft. This is a worst-case scenario, but even if collision did not occur, the discomfort to the

passengers, schedule alterations due to the course deviation, or possible public protest on the issue of

safety may result. As long as NAA are operating within or in the vicinity of the CAT routes, this

conflict is a definite possibility.

CAT route corridors (CRCs) are good compro_nises for air traffic separation providing interaction

of CAT aircraft and NAAs in an efficient and safe manner. The CRCs must be large enough to provide an

adequate buffer for minor CRC airspace intrusion by NAA, but must not severely limit NAA-usable

airspace. Such CRCs can be visualized as tunnels in the sky that link the CAT terminals and within which

the CAT shuttles fly. Outside of these tunnels would be the airspace for the NAA. In order to warn the

NAA pilot that he has transgressed into the CRC, a low-cost CRC intrusion alarm must be installed as a

minimum, providing an audible and visual alarm, and indicating the best direction to alter course in order

to leave the CRC. Such a device can be easily produced using existing technology. This simple system

will provide adequate safety against en-route collisions. A disadvantage is that the fixed CRCs may not

allow optimum CAT operations (straight-line courses) since a web of optimum routes may significantly

interfere with NAA operations. A more accurate study will require more information of proposed

terminal locations and major routes.

In the vicinity of the public air terminals, the solution is not as definite. For NAA pilots, the

takeoff and landing phases of the flight are the most demanding, and this results in a greater possibility of

mistakes occurring. This, combined with the increased traffic density, both automated and non-automated,

creates a critical situation. Ideally, if NAA were equipped with automated equipment so that the CAT

system can have control over just the takeoff and landing phases of the flight, safety would be adequately

ensured in the terminal areas. However, the same considerations about automation must be taken as

discussed earlier. Thus, non-automated pilot takeoffs and landings at terminals are predicted to continue.
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Separation of CAT vehicles and NAA via different runways/landing sites and a local CAT route corridor

will help alleviate the problem; however, due to the smaller relative airspace around the airport, these

methods will not be as effective compared to the en-route airspace safety. Note that this is only a concern

where NAA and CAT aircraft are sharing the same terminal. Minimizing this situation will yield the

highest possible safety factor.

The technological advancement in the field of aircraft avionics and control systems is predicted to

be adequate to meet the needs of the CAT system by the year 2010. Total automation of all phases of

aircraft operation will be safe and reliable due to sufficient redundancy of both land and airborne

equipment. A flight manager with proficiency in operating all phases of the vehicle flight should be

available on each vehicle as the final redundant factor, and also for the ease of mind of the passengers.

Ground based navigational aids to be used for en-route guidance for the CRC are already sufficient in most

areas of the proposed CAT routes, and thus transition to the CRC system can be easily performed with

little additional expense. The Global Positioning System (GPS), a satellite-based navigation system, may

be used with sufficient accuracy for en-route navigation in all areas.

Communication between ground and air will be assisted by CRT messages and graphic displays.

This will remove the possibility for error in misinterpreting verbal instructions given by air traffic

control. Digital data communication between the CAT computers and the CAT aircraft can be achieved

with current communication methods, but CAT aircraft'must have a system that can operate independently

of the ground computers in case of communication failure or jamming until the next terminal is reached.

Care must be taken in chosing and designing sites for the CAT terminals and flight paths. For

example, a minimum obstruction clearance for a straight-in approach for STOLs and VTOLs that was

suggested by the FAA is shown in Figure 1. From 30 feet to 1 mile out along the approach path, there

should not be any obstructions on a 20:1 glide-slope. From 1 mile to 3 miles, the suggested clearance is

14:1. On each side of the path, there should be a transitional area with a clearance of 4:1 extending 500

feet perpendicular to the approach center line (Ref. 6). These suggestions were developed before curved,

instrument approach paths were made possible by the microwave landing system, and thus do not reflect

the increased flexibility inherent with the MLS system. However, a similar study should be made at

every proposed site to ensure sufficient clearance from obstacles.
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Figure 1. Minimum Suggested Approach Path Clearance

Noise Considerations

Of the vehicles being proposed for the California Corridor Air Transit system, the tilt rotor

attracts the most concern from a noise standpoint. In order to provide the near door-to-door service

planned with the tilt rotor, the number of tilt rotors will be much higher than the number of other

corridor vehicles, and it will tend to operate closest to the bedroom communities located outside the

metropolitan regions of the state. The acceptability of this vehicle, both publicly and economically, will

be dependent to some extent on noise vs. cost and noise vs. weight trade-offs, as well as on how well the

vehicle is able to meet the noise standards of the year 2010 and beyond.

In order to function in the bedroom communities, the tilt rotor must be able to operate at or

below the noise levels set by the EPA and the FAA (see the chapter on noise). This means the day-night

average sound level (Ldn) of the tilt rotor should not exceed 57 dBA, the typical level for a suburban

community. This limit, however, is not rigid due to the inability of the public to perceive any noticeable

change in loudness or annoyance for a change of less than 10 dBA. As a result, some sources note a

maximum level of 65 dBA as an allowable Ldn for land uses involving residential housing (Ref. 7).

The value of the Ldn is indirectly determined by the EPNL of the tilt rotor, and is also a function

of the peak EPNdB time span and the number of night-time flights. The results of a noise assessment

procedure developed for a rotorcraft were based on these three variables. However, the first step to this

assessment was to determine a realistic noise level for the tilt rotor.



Themaximumnoiselevelsof thetilt rotorareassumedtobedeterminedusingtheICAO

helicopterlimitsshownin theAppendix.Basedonamaximumgrosstakeoffweightof 50,000pounds,

theselimitsgavemaximumnoiselevelsof 100.5,101.5,and99.5EPNdBfortakeoff,approach,and
flyover,respectively.It isassumedthattheICAOlimitswill beforcedtodecreasein thefuturesuch

thatthesamesizevehiclewill haveto bequieterthanatpresentinordertobecertifiable.
Threesignificantsourcesof noisein thetilt rotorvehiclearetheengines,thedrivesystem,and

theprop-rotors(Ref.8). Enginescanbequietedinanumberof ways,fromtreatinginletsandexhaust

portswithacousticabsorptionmaterialto increasingtheengineinstallationweightfactorto asmuchas

2.00foravehiclewithanoverallnoiselevelgoalof 80EPNdB(Ref.8). Thedrivesystemcanbe

acousticallytreated;however,aswiththeengine,thiswouldbedoneattheexpenseof ahighervehicle
emptyweight.Themostdramaticreductionsin tilt rotornoiseinvolvetherotors.Reductionof rotor

tipspeedis themosteffectivemeansof reducingnoiseannoyancecreatedbythevehicle(References.8and
9). (Aswasstatedin thechapteronnoise,thenoiselevelof anobjectisproportionalto theobject's

velocitycubed.)Normally,todecreasethenoiselevelof arotorcraft,therotordiskloadingis decreased

byincreasingeitherthenumberor lengthof therotorblades;trendsshowthede-creasein noisetobe

approximatelytwicethemagnitudeof thedecreaseindiskloading(i.e.,adropof 6 psfindiskloading

resultsina 12EPNdBdecreaseinnoise)(Ref.10).Thisallowstipspeedstodecreaseattheexpenseof
addedweightandcostto thevehicle.Theprop-rotorsof atilt rotorvehicledonotneedto spinathigh

rpm's,sinceatilt rotorWillnotnormallyoperateathighspeedsin thehelicoptermode.Therefore,rotor

lengihdoesnotneedto increase.However,toprovidelift in thelow-speedhelicoptermode(particularly

duringtakeoffandlanding)andforwardthrustin thehighspeedairplanemode,asizablesolidityis
required,meaningthataweightandcostpenaltyis incurred.(Anareaof furtherstudyis to determine

whetherthispenaltyis lessthanorgreaterthanthatfor a standardhelicopter.)

AccordingtoaV/STOLstudydonebyBellHelicopters(Ref.11),aprop-rotorsoundsmuchlike
apropelleranddoesnotemitthecharacteristicbladeslapof highspeedhelicopterrotors.Noiseincruise
mode,attilt anglesbetween0 and30degrees,is atleast7 to 10dBAlowerthanthatforthetakeoff

mode,whichproducesthemaximumnoiseexposure,andpredictionsshowareductionontheorderof 20
dBAasbeingpossible.

As was stated in the chapter on noise, operational procedures can be used to reduce the perceived

noise level of the tilt rotor vehicle without actually decreasing the amount of noise produced. These

procedures are beneficial for the aircraft operator, since no weight penalties are introduced (as would occur

if sound-insulating materials had to be incorporated in the vehicle). Performance, however, may suffer

during takeoff and landing, as certain ascent and descent patterns must be followed to satisfy vertiport

noise abatement requirements. Examples of approach and departure patterns are shown in References 9 &

11. Reference 11 also states that procedures such as entering the conversion corridor (the region where
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conversions from vertical to horizontal flight can be safely made) at the lowest possible airspeed will

assure mini-mum noise generation on the ground.

The conclusion to this analysis is that, with the predictions shown, and with the noise data of the

XV-15 being promising, it is not unreasonable to assume a civil tilt rotor vehicle will be built by the

year 2010 with a noise level at or below 80 EPNdB.

The two remaining vehicles being implemented into the California Corridor Air Transit system

are the electric-propulsion CTOL (ECTOL) aircraft and the magnetic levitation (Mag-Lev) train. Neither

of these vehicles will be operating as close to the bedroom communities as the tilt rotor vehicle; however,

they will have an impact on the overall system, due to their use throughout the Corridor.

The electric-propulsion CTOL aircraft will be significantly quieted by the use of electric engines.

Since fuel cells will be used rather than turbines and compressors, overall aircraft noise will become a

function of aerodynamics. Aerodynamic noise can be decreased through the use of laminar-flow airfoils,

which reduce noise due to turbulence. The ECTOL's ability to operate only out of large airports (4000 ft

runways) will keep it separated from quieter communities, as these airports will continue to be sur-

rounded by less noise-sensitive, light industry regions. Frequency of ECTOL vehicle flights will be less

than that of the tilt rotor vehicles. Therefore, the contribution of the ECTOL.to the overall Ldn of the

system will not be significant.

The Mag-Lev train, by virtue of its magnetic drive system, can be said to follow the same

reasoning as the ECTOE craft in terms of powerplant and turbulence noise reduction. The train will have

the least effect on populated areas, as its route will take it mainly through farmland regions in the San

Joaquin Valley.

Integration and implementation

As the implementation of an entirely new transportation system will face stiff opposition, a

logical plan for this must be used. The first thing to be done will be the integration of the electric CTOL

(ECTOL) aircraft into the existing community airports. Because the ECTOL is the most evolutionary of

the proposed vehicles, it is likely to encounter the least opposition from the communities. It will be

attractive to these communities in that it provides convenient air service, while the aircraft produces no

pollution and little noise. It has been shown that currently there is sufficient demand to warrant the

construction of the Mag-Lev train between Los Angeles and the San Francisco Bay Area, so construction

will begin on the track. This system will have implementation opposition in populated areas, but as the

population of California continues to grow, the demand for travel between these cities will also increase.

If the air transportation system cannot be expanded to meet the rising demand, a high volume system such

as Mag-Lev could meet these needs. As the Corridor Access Port (CAP) has been shown to be a viable
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and attractive concept for a number of reasons, construction will begin at its location near Kettleman

City. These three items comprise the first stage of implementation of the CAT system.

The second stage of the implementation begins with the opening of the CAP. At first it will be

served by the ECTOL aircraft and the Mag-Lev train for Corridor traffic, as well as by long range

domestic and international flights. As political pressure and restrictions are placed on the airports in the

metropolitan areas, the long range flights will be diverted to the CAP. This diversion will increase the

demand for corridor travel to the CAP. For the residents of the metro areas, the ECTOL aircraft is

convenient for those who live within a close proximity to an airport, while the Mag-Lev is only

convenient for those near the train stations. The rest of the population will also require similar

convenience if the system is to be successful. Since there is not sufficient land available to construct new

airports in most metropolitan areas, vertiports will be constructed. These can be located in industrial

areas, shopping centers, sports facilities, and similar loc3fions. With the construction of the vertiports,

the second stage of implementation will completed.

The final phase of the CAT system implementation involves the incorporation of the tilt rotor

aircraft into the metropolitan vertiports. After this is accomplished, the CAP will be easily accessible

for all persons, although the cost for this convenience will vary depending on the mode of transportation.

Public opposition to the noise and congestion at the major metropolitan airports will continue to increase,

leading to the diversion of more long range flights to the CAP. At this point, the CAT system will be

fully implemented. It must be realized that only through careful and intelligent planning could the

system be fully implemented.

v
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Introduction

The development of the California Corridor Air Transit system is dependent on community

acceptance, and a major element of this acceptance is noise pollution. Noise has been determi_ned to be a

criteria of utmost importance and concern in driving the design and implementation of any transportation

system that wishes to deliver a pseudo door-to-door service and still retain a reasonable level of

community acceptance. Research has been done to investigate techniques of noise measurement, regulation,

and reduction, so that conclusions can be reached as to what can be expected in the way of technology and

acceptance trade-offs in the year 2010.

Noise Measurement

Noise is defined as unwanted sound. Unwanted sound is any sound that tends to intrude upon a

person's everyday life, by means of interrupting conversation or sleep, or, more generally, by just being a

continual annoyance. As a result, noise measurement techniques have strived to established scales' based on

the psychological response of the public, so as to reflect quantitatively the qualitative judgements of those

bothered by the noise.

Noise is measured in terms of decibels, a logarithmic relationship defined as

dB = 10*LOG10(P/P °) (in dB) [1]

where the reference pressure P°= 0.00002 Pascals is the lowest sound pressure aiadible to the human ear.

The most common decibel scale used for measuring sound is the sound pressure level, defined as

Lsp= 10*LOG10(P2/p°2)= 20*LOG100a/P °) (in dB) [2]

--i
v
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Figure 1 shows the relationship of Equation [2], and highlights the fact that an increase of 6 dB results in

a doubling of the sound pressure level, while a change of 20 dB is equivalent to a ten-fold change in the

sound pressure.

4O

v

v

Ila
"o

O
t-

30

20

10

6

0

1 10

x Increase in Sound Pressure

100

Figure 1. Change in dB vs. Change in Sound Pressure

The effect of changes in sound pressure level, while being mathematically large, are not as

significant when described by people as changes in loudness. Figure 2 (Ref. 1), besides listing some

reference decibel levels and their sources, demonstrates the'common inability of humans to detect any

significant change in sound pressure level below a change of 10 dB. Therefore, as seen in Figure 2, a

perceived doubling of sound pressure, or loudness, occurs for a 10 dB increase rather than for a 6 dB

increase. This difference, while making it easier for a normally quiet sound to be occasionally louder

without much disturbance, makes it difficult for a loud sound to be even moderately loud due to the large

required decrease in dB level. This is a problem of sound reduction, discussed later.

L_v



58

O_IGI_IAL P_,_E 15

OF POOR QUALITY

= =

v

__ o o o o, o = _ _,
°_ _ _ _ _ _ < o o o

_ ,,..I ,,-I ,-,I
h'_ m

_8 _E E E E E ,---_-I---_..-.,,_

_ m m m m m

i 0 CD (D 0
0 _ GO

llJ>o
>Zo -_m

.u_ ,(

_J_o

<_o 0,_o

_ oo

_ o Z

m

W

rr -_

ILl>g _g
0
_E

0 0 0 o 0 0

o
o

.,2

_ g

I--
W

5
O

O O O O

D

.g

,4

t-

ID

O_-

ZC_

Oc
<

C O

_..J

I11,_

m O

_5

d_

O

d_-

-- e"

-_E

E>
O i--

n _

rr_

O

O
C9

%



59

'lit...'

V

Noise data is measured, discussed, and listed in many forms. In this report, the following

common terminology is employed:

A-Weighted Decibels (dBA)
the scale which most closely imitates the frequency characteristics of the human
ear.

Equivalent Sound LevelCLeq )
the constant sound level for which the acoustic energy is equivalent to the
acoustic energy of a measured fluctuating sound (usually measured over a 24-hr
period).

Day-Night Average Sound Level(Ldn )

used by the EPA to measure the Leq for a 24-hr period, with the addition of a 10
dB penalty for each nighttime noise measurement (nighttime is defined as 10:00
pm to 7:00am).

Perceived Noise Level (PNL in PNdB)
the noise level measured for a single event (such as a single aircraft fly-over).
This measurement is based on known levels of people's annoyance from fixed-
wing jet aircraft fly-over noise.

Effective Perceived Noise Level 0EPNL in EPNdB)

the maximum PNdB reading for a single event plus the time interval during
which the sound level is within 10 dB of this maximum,

"- L 1.
When discussing vehicle noise, and, in specific, aircraft noise, the measurement most often used is

the Effective Perceived Noise Level, or EPNL, which has the units of EPNdB (or effective perceived noise

in decibels). However, quite often, noise levels for air-craft takeoffs, level flyovers, and approaches (the

three noise levels recorded during flight tests) are listed in terms of Perceived Noise Level, or PNL,

which has the units of PNdB. While PNL is a more accurate measure of the noise people perceive from a

particular event, it only accounts for the highest instantaneous sound pressure level emanated during that

event. EPNdB, on the other hand, accounts for the length of time that an event is creating a perceived

noise level within a 10 dB range of the highest measured PNL (PNLmax) , and there-fore is a better scale

to use in determining time-related annoyance typical of air-craft noise. From Reference 2,

EPNL= PNLmax+10*LOG10(AT/20)+3dB (in EPNdB). , [3]

where DT is the time in seconds during which the noise level is within I0 dB of PNLma x (this is referred

to as the 10 dB down-time of an intermittent noise source). As can be seen from Equation [3], a noise

source will be louder (have a higher EPNL) as the 10 dB down-time increases; therefore, a proposed

vehicle should either have a low PNLma x or be as quiet as possible, as soon as possible, before and after

creating its highest noise level. The use of EPNL is a good way of quantitatively comparing noise sources;

for instance, while two noise sources could have the same maximum value of PNL, their values of EPNL

could be drastically different.
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One problem encountered when converting from PNL values to EPNL values is not knowing the

time span of the down-time, AT. In most reports dealing with aircraft noise measurement experiments,

time history graphs are included. These show the variation of the PNL of a source with respect to the

length of time that the noise is perceivable. Figure 3 shows a typical time history graph of a helicopter,

as well as the graphical method employed to derive an approximation of AT in seconds, which is then used

to determine the EPNL. Note that the sound of the advancing source contributes most to the down-time,

while the retreating source has a small effect. This is due to the Doppler effect, which tends to increase

the frequency of an approaching sound by increasing the relative velocity of that sound from the source to

the observer.
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Figure 3. Typical Time History Graph

Figure 4 shows a relationship between noise levels in terms of dBA and PNdB (Ref. 3), both of

which are measures of single events. Because of the fact that conversion from dBA to EPNdB (a time-

dependent scale) cannot be done directly, it is necessary to convert from dBA to PNdB, using Figure 4,

then from PNdB to EPNdB, so as to make the quantitative and time-related comparisons previously
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mentioned. A procedure outlined in the Appendix demonstrates these conversions and their usefulness

when conducting a noise assessment study.
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Figure 4. Comparison of Noise Rating Scales

The EPNL and the Ldn scales are both commonly used in determining Noise Exposure Forecast

(NEF) contours, contours of constant noise level spreading outward from an air-port (specifically from

the runways or helipads within the airport boundaries). To understand the significance of NEF contours,

the following should be considered: a reduction of one NEF unit is equivalent to 1) a reduction of about
j

2% in the number of people highly annoyed by aircraft noise (based on 1976 population statistics), 2), a

reduction of 14% in the area exposed to the same level of noise, and 3) an increase of 0.5% in property

values (Ref. 4). Values given to particular NEF contours are related to the Ldn (in terms of dBA) by

NEF = (Ldn - 35) + 3 dBA. [4]

The use of EPNL in determining NEF involves using the peak EPNdB reading Qf that region as well as the

number of day-time and night-time flights over that region. A summation is made of NEF levels

generated by individual aircraft (variable i) flying along individual flight paths (variable j), compensating

v
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for the psychological effect of a single night-time flight by having it contribute to the NEF calculation as

much as seventeen day-time flights (Ref. 2).

NEFij -- EPNLij + 10*LOG10(Ndij + 16.7*Nni j) - 88 (in dB) [5]

Approximations of NEF contour distances from an airport are made using the airport traffic index, a sum

of day-time flights and seventeen times the number of night-time flights (Ref. 2), which gives a rough

estimate of runway-to-contour distances.

Acceptance and Regulation

The need to design a quiet vehicle within the California Corridor has its origins in the noise

acceptance standards that the public has demanded since the late 1960's, when jet aircraft became more

abundant and noticeable. This need has also come about in the regulations and restrictions set down by all

levels of government as a means of protecting the public against ever increasing air and ground traffic

noise. A system that wishes to serve the commuter with the highest level of convenience and public

acceptability must work to acknowledge both the public demand and the regulatory laws and

recommendations so as to remain a viable system.

V

V

v
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Federal and state regulations have grown out of complaints from those living around airports.

Qualitative and quantitative tests have concluded that people are comfortable with Ldn values of 45 dBA,

but will tend to tolerate suburban noise levels up to Ldn values of 55 dBA (most people will accept these

levels as consequences of modern technology). As outdoor levels in residential regions increase nearer to

those of NEF-30 con-tours (Lan of 65 dBA), complaints, law suits, and political actions become more

abundant; these tend to be directed toward the airports and their operators, air carriers, and/or local, state,

and federal regulation agencies. According to the San Luis Obispo County Noise Element of 1976, there

are four government agencies that have some say in the amount of noise produced in and around airports:

the Environmental Protection Agency (EPA), the California Department of Transportation (Cal Trans),

the Department of Housing and Urban Development (HUD), and the Federal Aviation Administration

(FAA). As a result of these complaints, etc., the EPA, through the Noise Control Act of 1972, has

established acceptable land-use noise levels. Although the noise level breakdowns are rather specific, the

follow-ing list of general limits, sct by the FAA in Part 150 of the Federal Aviation Regulations

(FARs), serves initial design purposes quite well:

Community L__dn NEF

Residential
Suburban 57 Just inside NEF-20
Urban : _- 67 Just inside NEF-30

City Center 72 Just outside NEF-40

Commercial 72 Just outside NEF-40

Industrial 77 Just inside NEF-40

Cal Trans, through its Department of Aeronautics, still uses an early form of the Ldn restriction known

as the Community Noise Equivalent Level (CNEL). In addition to the 10 dBA penalty for night-time

noise, the CNEL includes a 5 dBA penalty for evening hours (7:00-10:00 pm). the HUD policy dictates

maximum time periods within a given 24-hr period that a certain sound level may be present within a

particular environment (e.g., a site is unsuitable for residential housing when an outdoor sound level of 75

dBA is present for more than 8 hours per 24-hr period, or when a sound level of 80 dBA'is present for

more than one hour per 24-hr period) (Ref. 2). Finally, through FAR Part 36, the FAA has established

maximum noise level guidelines that must be met for type certification of all aircraft. The most recent

guidelines, established in 1976 as the Stage 3 regulations, are dependent on maximum gross takeoff

weight, and are meant to decrease approach, departure, and sideline noise, so as to decrease the size of NEF

contours and the day-time average noise levels in communities near airports. A noise standard similar to

FAR Part 36 is Annex 16 of the International Civil Aviation Organization (ICAO). This document, in

addition to aircraft, covers noise standards for helicopters, also based on maximum gross takeoff weight.

Requirements for both the FAA and the ICAO are listed in the Appendix.
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The restrictions of the above listed agencies must be kept in mind when designing an aircraft.

Takeoff and landing noise and flight patterns into and out of airports (minimizing impact on surrounding

areas), and number of night-time flights (minimizing impact on average noise levels) must be considered,

and the set requirements and restrictions met, to have a system that is certifiable and publicly acceptable.

This is because community acceptance, vital in maintaining a viable air transit system that will operate

close to suburban population centers, has been found to be dependent on the frequency of aircraft

intrusions, the nearness of aircraft operations to noise-sensitive areas, and on levels of compensation from

the aircraft operators.

The more frequently a loud sound intrudes on conversation, sleeping, or leisure activities, the

louder it is perceived to be by the listener. Therefore, if a system is planned to operate 24 hours a day,

with many of those hours spent going into and out of suburban communities, it must be able to remain at

or (preferably) below the FAR Part 150 land-use noise l_vels defined earlier. What this indicates is that

it is currently nearly impossible to get an aircraft into an urban or suburban area with much frequency,

especially during the late evening, unless that vehicle can be designed with an EPNL well below some

undetermined minimum. The procedure contained in the Appendix (mentioned earlier) serves as a means of

determining the number and time-spans of allowable intrusions, based on the FAA limits listed above,

and gives some indication of the subsequent maximum aircraft noise level.

The frequency of vehicle operations into and o_t of a given community is also a function of the

distance at which the vehicle intends to operate from noise-sensitive areas. Generally, noise-sensitive areas

are any place where residents object strongly to noise levels that are significantly higher, for a

considerable length of time each day, than the ambient noise level. The purpose of the EPA and FAA

land-use guidelines is to separate noise-sensitive regions (such as suburban communities) and noise-

impacted regions (airport approach and departure corridors). However, by the time these standards were

implemented, many major and secondary airports already had large mixed urban development around them.

In 1972, approximately 600,000 people lived within NEF-40 con- tours around some of the nation's

busiest airports (6.7 million people lived within the NEF-30 contours of those same airports) (Ref. 8).

This development has turned public opinion against large airports, where noise levels are almost always

higher than the surrounding communities would like.

In the situation where a vehicle cannot adequately meet the noise restrictions handed down by city

and county governments (restrictions determined most often by public complaint), the operator may be

able to secure variances from these bodies. Currently, airports are granted variances, agreements with the

surrounding community that state eventual elimination of certain noise sources over a period of time,

usually two to five years. This would allow a system to start up at noise levels that may not be enjoyed,

but which may be temporarily accepted by the public, until such time that the system is able to initiate

the use of quieter vehicles. If the system is able to show good response with these variances, it may be

able to gradually bring about a quiet system, rather than trying to develop that system all at once. If this
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avenue does not prove to be advantageous, the only other alternative, aside from paying fines or not

operating the system, would be to compensate the neighborhoods surrounding the points of operation.

This idea has been passed around for many years between community pressure groups and local

governments, and would seem to work as a means of quieting community protest and as a less expensive

way for the airlines to lower their "perceived" noise levels for a short while. In most cases, one would

want to use compensation only on a temporary basis, to allow starting up a slightly noisy system, until

the operator can afford, or show the need, to phase in quieter vehicles. The politics and economics of

variances and compensation leave this area wide open for debate, and the operator's position will be greatly

dependent on technology levels and initial capital investments available to the system in the year 2010.

Noise Reduction

It is assumed that pressure from local and state interest groups, as well as from the EPA, will

force the FAA to set lower maximum sound levels than currently exist as the Stage 3 limits and set

tighter restrictions, both in terms of noise measuring techniques and punishment for noisy operations, by

the year 2010. In order to meet these projected sound level and operational restrictions of the future, two

sound reduction methods should be considered: aircraft operation and aircraft design. An increased

involvement by airframe manufacturers is being see0 in these two areas, since modes of oper[_tion,

configuration, and aerodynamics have been shown to have significant effects on sound generation.

Operational sound reduction does not reduce the levels of noise produced by the aircraft; rather, it

reduces the amount of noise that is perceived by people on the ground. Methods include steeper glide

slopes, day-time flying, and operating away from people. A steeper glide slope upon landing reduces the

noise level because the aircraft is able to spend more time in the air at higher altitudes, meaning the sound

has a longer distance to attenuate. Approach and departure footprints are also greatly reduced. Day-time

flying masks most of the noise with background sound, and the warmer temperatures during the day do

not transmit sound as well as the cooler temperatures at night. However, a system restricted to operating

only during the day is not used to its full potential. Finally, operating away from people, or near other

loud sources, can reduce the perceived noise levels of aircraft. This, too, is a disadvantage, becaus.e the

transportation system in the Corridor is expected to offer nearly door-to-door serviced, and must

therefore operate close to the public and within the communities. Thus the only realistic operational

sound reduction technique, of the three listed, is that of using a steeper glide, an operation best suited for

vertical takeoff and landing (VTOL) aircraft.

Sound reduction through aircraft design falls under two categories: passive (de-signing of low

sound-producing components) and active (cancelling out noise produced by the aircraft). Passive sound

reduction includes the use of laminar airfoils, lower disk loadings, high by-pass engines, and better

judgement in determining engine location. Laminar airfoils reduce the turbulence that creates aerodynamic

v
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noise; lower disk loadings, which decrease noise levels, can be accomplished by using longer rotor or

propeller blades, which can be spun slower, leading to a reduction of blade tip velocity and another

decrease in the noise (since noise is proportional to velocity cubed); high by-pass engines produce high mass

flow rates with less power out (noise is proportional to power to the eighth power); engine location is a

trade-off between interior (cabin) and exterior (ground) noise, which has thus far gone mainly to the

benefit of the paying customer in terms of quieter cabins. Some of these designs will be discussed in the

vehicle studies. Active sound reduction includes the use of synchrophasing, vibrational damping, and

white noise. The first method has sound produced on one side of an aircraft cancelling out sound produced

on the other side; in the second method, structural vibration (which is caused by and creates sound waves)

is quickly and heavily damped; the third method fights sound with sound by artificially generating noise

which is out of phase with that being produced by the aircraft (this method is easier to use for cabin noise

than for complex exterior noise).

However, no matter which method is used, or to what extent both methods are used, the question

of how sound reduction will affect the design, performance, and cost of the aircraft will also need to be

closely examined. Answers to these questions are attempted in the vehicle studies.

Conclusion

6

Noise is an important parameter in any transportation system, be it produced by aircraft or

ground-based vehicles. Indeed, it is an element of modem day transportation systems that everyone

encounters on a daily basis. The people who do not use the system should not have to be exposed to the

noise generated for the convenience of those who do. Therefore, noise must be reduced, and designers,

governments, and communities will have to work together to meet that goal.
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CORRIDOR ACCESS PORT
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Overview

The Corridor Access Port (CAP) will be a Wayport located in a heavily traveled corridor, but

away from population centers. The philosophy behind this is that a facility having only one purpose is

likely to die with time, but one with many uses will thrive (Ref. 4). A Wayport located in northern

Nevada, for example, would be useful for domestic and international flights, but would do little to aid

travel within the California Corridor. What is needed is a location that is along the north to south path

connecting most of the Pacific coast's major cities. The CAP should also be as equidistant as possible

from the States two largest cities Los Angeles and San Francisco.

The Corridor Access Port will require about 60 square miles of land. The land around the site

will remain under the airport's control. This will allow for future expansion, and will help safeguard

the airport from land use which may jeopardize its operation. The primary terminal building will be

located adjacent to Highway 5. This terminal will manage the passengers from all the modes of

transportation that will use the CAP. The CAP will be designed to serve all types of conventional

takeoff and landing aircraft (CTOL), vertical takeoff and landing (VTOL). The Corridor Access Port

would also include major maintenance facilities for the support of these modes of transportation.

A tentative site has been selected for comparison purposes. It is located along Highway 5, South

of the Tule Basin near Kettleman City. The advantages of this site include the lack of surrounding

population, flat land, low land costs, and it is almost equidistant from San Francisco and Los Angeles. It
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is also not in the proximity of any wildlife refuges. The nearest wildlife refuges are the Kern Wildlife

Refuge and the Pixely Wildlife Refuge. It is believed that this site merits further serious consideration.

Most airports currently in service were designed with land constraints as a major factor. The

Corridor Access Port will be designed to optimize CTOL operations using land as this requires. The

runways will be oriented on a heading of 320 ° in order to be aligned with the prevailing winds. An

inbound aircraft will approach from the southeast. The aircraft will then make a landing on the runway

south of the terminal. Next, the aircraft will approach one of the"Drive Thru" terminals to refuel and

take on passengers. Passengers will use an underground rail system to move quickly between the main

terminal and the various drive-thru terminals. The takeoff will be made from the runway north of the

terminal. The CTOL operations will be organized in this manner to simplify air traffic control (ATC),

to keep the amount of aircraft taxiing to a minimum, and to minimize the turn around time. Some future

aircraft--supersonic and hypersonic transports--will require long runways for takeoff. This airport design

allows room to lengthen individual runways as demand requires.

An overview of the Corridor Access Port is shown in Figure 1. Adjacent to Interstate 5 are the

main terminal and parking structure. A Mag-Lev train station is located in the main terminal. East of

the terminal are the vertiports or landing pads for vertical takeoff and landing aircraft. Further east are

runways for commuter aircraft and high capacity transports. An underground rail system connects all

facilities.

Figure 2 further demonstrates some of the outstanding features of the Corridor Access Port

design. As is evident in the figure, the landing runway is adjacent to the take-off runway corresponding to

the terminal to its east. This stagger increases air safety. Two aircraft making an approach for landing

have not only the 2500 feet lateral spacing required by the Federal Aviation Administration, but have

increased vertical spacing from other aircraft as well. This design shares several features with the new

Denver International Airport which is now approaching the ground breaking stage (Ref. 7).

V
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Figure I. Overview of Corridor Access Port

The Corridor Access Port provides opportunities to explore never before feasible air transport

concepts. For example, this facility will serve so many travelers that it will make it possible to consider

large capacity conventional aircraft. Aircraft that may be feasible are the 600 to 1000 passenger aircraft

and million pound cargo airlifters (Ref. 1). Alternate fuels such as liquid hydrogen could be made

available to the air transport industry. The Golden State Corridor Access Port could become the location

of operations for projects such as the National Aerospace Plane (NASP). It is difficult to imagine

supersonic and hypersonic transports operating anywhere else due to noise constraints.

Air Traffic Control

o .
v

The CAP will be the primary collection point for air travel to, from, and in the California

Corridor region. Preliminary estimates predict that in 2010 the traffic volume at the CAP will exceed

the current volume at Los Angeles International Airport by a factor of four. With the current air traffic

control system, such a traffic volume would barely be manageable. Implementation of a microwave

landing system (MLS) which will be at all international airports by 1998 will help alleviate the problem
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Figure _. CAP runway layout Runway centerlines are canted 40 degrees NNW into

the prevailing winds of the proposed San .Ioaquin Valley site
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by allowing multiple, precision-approach paths. The instrument landing system (ILS), used today, allows

only a single, straight-in approach path per runway (Ref. 2).

For increased safety and all-weather operations, automated approach and landing systems for all

aircraft will be required. Automated landing of CTOL airplanes is not new; one of the first, the Smiths

Auto-Land System was successfully used for the Hawker-Siddeley Trident airplane. More advanced

systems have been developed since then, with multiple redundancy for increased safety. Since the auto-

land systems were first implemented, the safety record of auto-land systems is about I fatal accident in

ten million, landings (Ref. 3). In 1982, NASA Ames experimented with helical automatic approaches

for helicopters using the MLS with success. The system utilized a 60 knot approach speed, descended in a

helix enclosed within a square 0.75 mile on each side, and performed successfully in up to 15 knot winds

(Ref. 4).

The airspace above and within a 15 nautical mile.radius of the proposed CAP will be under the

control of a Terminal Control Area (TCA) environment which places equipment and communication

requirements on all aircraft flying within the controlled area. This also allows the air traffic controllers

to vector aircraft to and from the CAP, and to advise routes that provide adequate separation between

aircraft. The TCA is a standard system that has been in use for many years, and has been proven effective.

One tool that will be used is the airborne Traffic Alert and Warning System (TCAS II). This

system has a required installation date of 1991 for all IA.S. air carriers with thirty or more seats. It

features a map-like display and visual and audio warning of converging transponder-equipped traffic within

fournautical miles of the host airplane. If converging aircraft are twenty to thirty seconds away, the

TCAS II will inform the pilot of an escape maneuver to avoid the oncoming aircraft. This system will

help pilots to locate and avoid previously "invisible" aircraft (Ref. 5).

Applied together, these tools are predicted to be satisfactory in handling the air traffic volume at

the CAP.

Weather

Portions of the San Joaquin Valley, specifically in the region of the CAP, are covered by dense

fog for an average of 23.2 days out of the year, or 6.4% of the year. Dense fog in this context is defined as

visibility of less than one quarter mile. Since automated landing systems qualified for Category IIIC

instrument flight conditions (zero visibility, zero feet ceiling) are standard equipment for all aircraft

using the CAP, fog will not be an obstacle for CAP operation.

The prevailing winds in the Great Central Valley generally blow northwesterly with an average

velocity of 6.4 knots. Occasionally, strong winds blow from the southeast, with the record peak velocity

of 46.0 (December 1977). The period of high winds tend to occur once a year (Ref. 6).
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Utilities and Facilities

The CAP is designed to be self-sufficient in order to produce the least amount of negative

economic, environmental and political impact to the surrounding communities. In order to best achieve

this goal, careful evaluation and planning must be performed in supplying the operational needs of the

CAP, and for chosing the types of facilities and services to be provided at the CAP.

The basic utilities that the CAP requires are electricity, water, telephone, trash disposal and

sewage. High voltage power lines already traverse the proposed CAP site, paralleling Interstate 5.

Whether these power lines can supply sufficient electric power to the CAP is doubtful; however, more

lines can be provided following the same route, or a more direct route from other electric power plants.

Also, these power lines will have to be relocated in the vicinity of the CAP for air safety reasons.

The California Aqueduct flows adjacent to the highway, in close proximity to the CAP site. The

Aqueduct holds sufficient water to supply the needs of the CAP, though other water collection and

storage facilities should be used to lessen impact on other Aqueduct users. An on-site water treatment

plant will have to be built to purify the water, which opens the possibility of supplying water to the

surrounding communities.

Telephone service will have to be contracted from the telephone company, requiring new phone

lines to be installed. One option could be a direct satellite link, thus removing the need for new phone

lines.

Trash will have to be moved out by train or by truck since there are no nearby landfill sites of

sufficient size for the predicted quantity of trash produced by CAP. An incineration and recycling plant

at the CAP is a possible alternative, but this is viable only if the resulting pollutants can be effectively

reduced or eliminated by filtration or chemical treatment.

Sewage disposal will require an on-site treatment plant. Due to the low altitude of the site and

the barrier formed by the surrounding hills, the treated waste will not be able to be passed directly out to

the ocean. The nearest river is the San J'oaquin River, 10 miles east of the CAP site, and this may be used

as an outlet for the treated water. An environmental impact study of the effects of such a action has not

been done.

Apart from the basic operational requirements of the CAP, passenger needs must be examined.

Ideally, the CAP will only be used as a transfer point for intra/inter-corridor and international travel,

and thus few customer facilities would be required. However, for customer convenience, flexibility, and

due to unforeseen events such as delays and missed flights, a range of services should be provided. The

quantity and quality of services that should be resident at the CAP cannot be determined without a market

and economic study. These studies were not performed in order to not detract from the primary purpose

of this project. A list of suggested services that might be needed follows. Note that this list is by no

means complete.

\

\
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Restrooms/showers

Fire

Aircraft maintenance

Fuel (aircraft, automobile)

Computer/Electronics maintenance

Meeting rooms

Duty free shops

Money changers

Bank teller machines

Fax service/telegram

Overnight lodging

Seats, couches, benches

Museum

Baggage carts/handling systems

Medical

Security

Towing

Power plant (backup)

Restaurant/Cafes

Customs office

Convenience stores

Travel agents

Telephones

Insurance

Information desks

Lounge/Bar

Porters

People movers

Due to the centralized location of the CAP and the accessibility of the CAP from any place in

California via the CAT system, employees at the CAP can live just about anywhere in California and still

remain within easy reach of their workplace. This would reduce the "boomtown" effect that would

results if all the employees were to live in the area immediately surrounding the CAP.

Air-Carrier Politics

The primary focus of the CAP is to provide a central location for air operations. In order to

accomplish this goal, air-carriers, both international and domestic, should use the CAP as their primary

California airport. This would involve relocating their current facilities from the San Francisco and Los

Angeles areas to the CAP. This is not an inexpensive nor a necessarily convenient task. Thus, it is

important for the CAP to be a sufficiently attractive alternative for them if they are to seriously consider

using it.

Currently, most air-carriers lease their air terminal space from the airport. This is a direct

operating cost for them which may reach into the millions of dollars per year at major airports. An

attractive incentive that the CAP might offer is free rent for the first few years of the air-carrier's

operation. Also, since the air-carrier will be operating one facility at the CAP instead of two or more

around California, the carrier would be able to consolidate their management, equipment, maintenance and

other facilities at the one location.

\
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Another advantage of using the CAP is that it will be a new facility, boasting top of the line

equipment and efficient design.. This airport will be designed for the current and proposed fleet of

aircraft and the predicted future traffic volume, thus providing a permanent base for the air-carrier. Also,

if there is sufficient volume, one or more runways can be dedicated to an air-carrier, thus essentially

creating their own airport, and removing delays due to competing traffic.

Though not as attractive as a motivator, public pressure at the current airports may provide

incentive for the air-carriers to relocate. Already, communities have raised complaints about noise and air

pollution, safety, and traffic problems near major airports. In some instances, the complaints have been

strong enough to convince the government to impose regulations on airport operations. With a viable

alternative such as the CAP available, the public may even strongly suggest that the air-carriers move to

the CAP, thereby benefitting both the public and the air-carrier.

The CAP will also be a solution to the operatiot3al problems at the large airports. Los Angeles

International Airport, for example, has already reached its maximum capacity with no room for

expansion. Thus, if the air-carriers wish to expand their services, they would have to either compete for a

time slot that does not really exist, or open an alternate facility at another airport.

t
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A study done in the early 1970's by NASA Ames Research Center predicted that if conventional

takeoff and landing (CTOL) aircraft continued to be used in the 1980's and beyond congestion would begin

to dictate price. It would reach the point where the normally higher cost of a short takeoff and landing

(STOL) aircraft would become comparable to the normally more economical CTOL aircraft. This would

occur because of ground and air delays, and invariably higher fuel consumption which is passed on the the

customer in the form of a higher ticket price. That time has come. Statistics show that the inter-regional

commuter is currently suffering from chronic delay and price increases due to existing airport congestion.

Additionally, air transportation does not solve the problem of travel within a metropolitan region for the

vast majority of people. For these reasons along with space restrictions, vertical takeoff and landing

(VTOL) vehicles as well as short takeoff and landing (STOL) vehicles were investigated and evaluated for

application within the California corridor.

With no official guidelines to follow, a search was conducted on a variety of VTOL and STOL

vehicles, to familiarize the class with various configurations. Descriptions, advantages and disadvantages,

as well as some variations on the original configurations were gathered in hopes that a small database of

information could be used to pick a vehicle configuration once some specifications had been chosen. These

descriptions are in Appendix.

As this process drew to a close, it became apparent that there were a number of vehicles that

were finding favor. A sample mission specification was chosen for the maximum distance in the corridor

as defined by the California corridor study. The range was set at 500 nm and desired airspeed was 500

knots. The payload was 20,000 lbs (100 passengers at 200 Ibs per passenger). Using this mission profile,
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a trade-off study was conducted to determine if one or several configurations could be eliminated from

consideration. Design criteria were chosen and given a weighting factor, signifying their relative

importance. Based on a scale of 1 to 5, with 5 being the most desirable weighting factor, the design

criteria were rated as follows:

Direct Operating Cost (DOC)

Productivity Parameter

Time (Door-to-door)

Noise (at a 500 foot sideline)

Technical Risk

2

5

4

3

Z

1

Direct Operating Cost was decided to be the most important design driver due to the simple fact

that if a passenger has to pay too much money he will choose another mode of transportation. This could

eventually lead to the closure of the more expensive transportation system. Productivity parameter is an

indication of the efficiency of moving passengers. This is rated highly because of its importance to the air

carrier, as it reflects profit. Time was rated, reflecting the importance people place on their time. Noise

was important as well, but not seen as a driver like the other three parameters. This was changed in later

studies.

The trade-off study is presented in Table I. Data used for the rating of each configuration was

gathered from existing California Corridor configuration studies. Although there was a margin of

uncertainty, STOL vehicles employing externally blown flaps or and augmentor flap were considered

inefficient for the sample mission.
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Table I. Sample Vehicle Trade-Off Study

%J

Mission Profile

Design Wt.
Criteria Factor EBF

DOC 5

Productivity 4
Parameter

Time 3

Noise 2
(500 ft. sideline)

Technical 1
Risk

TOTALS

Note:

Range: 500 nm
Velocity: 500 knots
Payload: 20,000 lbs

AW

R* S__T**

3[ 15

3 12

2i 6

2 4

4 4

MF

RST

2 10

2 8

3 9

2 4

4 4

USB

RST

31,5
3_ 12

i

I
3:9

2 4

5 5

STOWED

RST

5!25
4 16

2;6

4 8

t

5:5
I \

!

TILT

RST

2012
I

I

5' 15
1

2'. 4

2i 2
__L___

41 35 45 63 53

EBF = Externally blown flaps
AW = Augmentor flap
MF = Mechanical flap
USB = Upper surface blown flap
STOWED= Stowed Rotor
TILT = Tilt Rotor

RST

5 25

4 16

3 9

3 6

4 4

50

k

* This is the rating given a vehicles in a criteria category

** This is the subtotal, the rating multiplied by its weighting factor

V

v
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This lead to a more encompassing trade-off study comparing vehicles serving a particular market

in a transportation system. Two typical mission profiles were chosen to emulate a short distance

intrametropolitan trip and a longer range, inter-metropolitan journey. The intra-metropolitan mission had

a stage length of 35 nautical miles and a system capacity of 10,000 passengers a day. This was felt to be

indicative of a typical commuter hop. The inter-metropolitan mission had a stage length of 270 nautical

miles and a system passenger capacity of 40,000 passengers per day, approximating a trip from San

Fransisco to Los Angeles.

The list of design criteria grew much larger than the first trade-off study. The driving

parameters were considered to be cost, time, noise, pollution, and user convenience. Safety was rated

lower than these parameters because it was felt that the design should not be driven by safety beyond the

strict level of certification through the FAA.

There were five systems considered for the trade study, with eight vehicles in all. Vehicles and

their appropriate transportation system considered for this trade-off study are listed in Table II. For

purposes of comparison an automobile was included in the intra-metropolitan mission, dubbed the regional

route. A 100 passenger CTOL aircraft was added along with the automobile for the inter-metropolitan

journey, henceforth referred to as the state-wide route.



Table II. Vehicles and Systems in the Trade-Off Study

v

STOL Only

VTOL/STOL

One Hub

LTA/VTOL

Mag Lev

* 30 passenger DeHavilland Dash-7 derivative for short and
low density routes.
* 60 passenger DeHavilland Dash-7 derivative for longer and
high density routes.

* 40 passenger low speed VTOL aircraft - compound
helicopter, to service intra-metropolitan travel.
* 150 passenger upper surface blowing (USB) STOL aircraft
with 4000 foot runway requirement to service inter-
metropolitan travel.

* 40 passenger high speed VTOL - tilt rotor, to use one or two
hubs in the middle of California as a mixing station. Will
serve neighborhood to neighborhood.

* A combination airship and compound helicopter team will
serve both intra- and inter-metropolitan routes. The airship
will continually circle in a predetermined route while VTOL fly
from vertiports and dock on the LTA, unloading and loading
passengers on this hub in the sky.

* A magnetically levitated train running the length of
California down the central valley, servicing only high density
routes. It utilized existing rail transportation within a
metropolitan area.

- °

s
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Competing in the regional route were four vehicles: the auto, a 40 passenger low speed VTOL

aircraft (compound helicopter), a 40 passenger high speed VTOL aircraft (tilt rotor), and a airship with

support from a 40 passenger compound helicopter. Each vehicle was rated in twelve design criteria

categories on a scale of 1 to 10, 10 being the most desirable. When the ratings were multiplied by specific

weighting factors a subtotal was achieved. Adding all subtotals, a total value was arrived at for each

vehicle. The auto ranked the highest, with the tilt rotor and compound helicopter falling.in secor_d and

third. Allowing for a 10 percent uncertainty (5 percent on each side of the total), only the 30 passenger

STOL aircraft did not fall within some common range of numbers, showing that it was clearly not

suitable for the proposed mission. Although the LTA/VTOL combination fell within the percentage

uncertainty, doubt developed as to its potential in the regional route.

For the state-wide route seven vehicles were studied: the 60 passenger STOL aircraft, 40

passenger tilt rotor, 150 passenger USB STOL, 600 passenger airship, mag lev train, 100 passenger CTOL

aircraft, and the automobile. Again each vehicle was ranked in 12 design criteria categories, revealing that

the automobile is the least desirable vehicle for a state-wide route. Applying a 10 percent uncertainty all
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the other vehicles were considered competitive with one another. The airship/VTOL system and 100

passenger CTOL aircraft, however, made weak showings. A summary of the trade-off study is located in

Table III. An index to clarify how criteria were defined and how ratings were chosen can be found in the

Appendix.

Table III. Regional Route Vehicle Comparison

Mission profile: Range: 35 nm
Passenger capacity: 10,000 Pax/day

Design
Criteria

Cost

Noise

User Convenience

Time

Pollution

Flexibility

Resources Used

Safety

Technical Risk

Weather/
Terrain

ATC/TTC

Aesthetics

TOTALS

Wt. 30 Pax
Factor STOL

R* ST**

10 8 80

I0 6 60

10 1 10

9 6 54

9 5 45

7 7 49

7 6 42

5 7 35

5 9 45

5 8 40

Auto

R

10

9

10

t5

0

10

4

6.5

10

9

40 Pax
Compound

K ST

6 60

7 70

8 80

9: _- 81

3.5 31.5

9 63

5 35

5 25

9 45

8 40

8 24

7 14

yehicles

40 Pax
T Rotor

R ST

4 40

8 80

8 80

8 72

5 45

7 49

5 35

5 25

8 4O

8 4O

8 24

8 16

546

600 Pax
LTA/CH

R ST

1 10

7 70

7 . 70

81 72

10 90

8 56

5.5 38.5

5 25

6 30

7 35

7 21

6 12

529.5

ST

100

90

100

45

0

70

28

32.5

100

45

3 5 i 15 2 6
I

2 8 ) 16 2 10
!

491 568.5 586.5

[ 10 % Uncertainty] [466-516] [540-597] [519-573] [504-556] [557-616]

* This is the rating given a vehicles in a criteria category
** This is the subtotal, the ranking multiplied by the weighting factor



Table III. Regional Route Vehicle Comparison
(continued)

Mission profile: Range: 270 nm
Passenger capacity: 40,000 Pax/day

Design
Criteria

Cost

Noise

User Convenience

Time

Pollution

Flexibility

Resources Used

Safety

Technical Risk

Weather/
Terrain

ATC/TTC

Aesthetics

TOTALS

[10 % Uncertainty]

Wt.

Factor

10

10

10

9

9

7

7

5

5

5

3

2

60 Pax
STOL

R* ST** R

9 90 8

7 70 8

9 90 10

7 63 5

5 45 3.5

7 49 9

6 42 _._ 5

7.5 37.5 6

9 45 8

8 40 8

6 18

8 16

605.5

[575 - 636]

yehicles

40 Pax
T Rotor

sT

80

80

100

45

31.5

63

35

30

40

40

8 24

7 14

582.5

[553 - 612]

8

8.4

7

5

150 Pax
STOL

R ST

8 80

80

84

63

45

7 49

5 35

6 30

9 45

8 40

6 18

8 16

584.5

[555 - 613]

This is the rating given a vehicles in a criteria category
This is the subtotal, the ranking multiplied by the weighting factor

600 Pax
LTA/VTOL

R ST

3 30

8 80

6.5 65

5 45

10 90

8 56

5.5 38.5

6 30

6 30

7 35

7 21

6 12

532.5

[506 - 559]
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Table III. Regional Route Vehicle Comparison

(continued)

V

Mission profile: Range: 270 nm

Passenger capacity: 40,000 pax/day

Design
Criteria

Wt. Mag Lev 100 Pax
Factor Train CTOL A u to

V

Cost

Noise

User Convenience

Time

Pollution

Flexibility

Resources Used

Safety

Technical Risk

Weather/
Terrain

ATC/'TTC

Aesthetics

TOTALS

[ 10 % Uncertainty]

R* ST** R

10 4 I 40 10

10 7 I 70 3

10 9.3 93 7

9 7 63 6

9 10 90 6.5

7 6 42 :__ 6

7 8 56 4

5 9 45 7.5

5 8 40 10

5 8 40 7.5

3 10

2 6

ST

100

30

70

54

58.5

42

28

37.5

50

37.5

30 6 18

12 9 18

621 543.5

[590 - 652] [5i6 -570]

R ST

10 100

9 90

7 70

0 0

0 0

10 70

4 28

6.5 32.5

10 50

9 45

2 6

10 20

511.5

[486 - 537]

* This is the rating given a vehicles in a criteria category
** This is the subtotal, the ranking multiplied by the weighting factor
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The Electric-powered Conventional Takeoff and Landing (ECTOL) aircraft is the most

evolutionary vehicle in the CAT system. The ECTOL has been designed to immediately serve secondary

airports and the CAP (when constructed), providing clean, quiet, and convenient service.

Electric propulsion was chosen for several reasons. First, since pollution is an ever-growing

concern, the completely non-pollutive ECTOL combined with clean methods of recycling lithium slurry

that is quite possible in the future, would present an environmentally attractive system. The electric

propulsion is also quiet compared to conventional turboprop engines because of the lack of compressor

inlet or turbine exhaust noise. The final reason for choosing electric propulsion was to explore the

possibilities of this technology as applied to a full-size transport aircraft.
j

The basic design philosophy behind the ECTOL was to build an inexpensive, easily maintainable,

efficient aircraft that could be used in systems world-wide similar to the California Corridor. This

philosophy lead to decisions as the 8,500 ft cruise altitude which requires no pressurization, and a

completely automated flight system. The automated flight system would cut crew costs, the major

portion of airline expenses, and increase operations per hour by precisely monitoring individual operations

(Ref. 11).



Mission Specifications

v • Range (nm) 470

• Cruise Altitude (feet) 8,500

• Runway length (feet) 4000

• Payload (passengers) 31

• Cruise speed (knots) 250

• Crew 2

• Certification Far 25

The mission specifications dictate a maximum range of 470 nautical miles. The longest distance

expected to be served by the ECTOL aircraft in the California Corridor is a route from San Diego to San

Francisco, a distance of 400 nautical miles. A 15 percent energy reserve is added to this distance to allow

the aircraft to land at alternate airports. With the use of the CAP, the maximum needed range from

major populous areas to the CAP is 200 statute miles, allowing for a round trip without refueling while

still achieving a 15 percent reserve.

The aircraft will be non-pressurized, and thus will have a cruise altitude Of 8,500 feet, thereby

providing adequate oxygen for pilot, crew and passengers. A non-pressurized aircraft allowed for cost

savings and ease of structural maintenance as well as an extended fuselage life compared to a pressurized

hull.

A required runway length of 4,000 feet allowed the ECTOL to use all existing airstrips in

California currently being served by a commuter air carrier. This runway length also allowed for the

expansion into other existing neighborhood airstrips not currently being served due to a present lack of

passenger demand or community pressure to eliminate noise pollution. The expected landing noise

production of the ECTOL, 70 EPNdB, allows for the opportunity to conveniently serve the market

demand not currently being served due to the noise issue.

Due to an FAA forecast (Ref U.S. Federal aviation administration, DOT, FAA Aviation Forecast,

FY 1988-2000, USGPO, Washington, D.C.) to the year 2000 which projected that aircraft sizes of 20-40

passengers will be needed to fill the commuter air carrier demand, the ECTOL was chosen to have a

capacity of 30 passengers. A cruise speed of 250 knots was decided upon since that was the maximum

speed permitted for an aircraft operating under 10,000 feet by the Federal Aviation Administration (FAR

91.7 Part A).

A crew of two is required for the ECTOL aircraft -- one flight attendant and one pilot. An

automated flight control system will act as the primary aircraft control system with the pilot acting as a

secondary crewman in the event of incapacitation of the main system. The automated flight control

system will be able to perform basic workload functions such as flight control path, collision avoidance,
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navigation, communication, operation and monitoring of aircraft engines and systems, and performing

command decisions.

Configuration

The configuration of the ECTOL is quite conventional: the ECTOL is a low-wing aircraft, with

conventional empennage consisting of a single vertical stabilizer and a horizontal tail mounted high at the

aft end of the fuselage (Figures 1-4). Ease of loading and unloading the fuel cells, as well as shortened

landing gear length, made the low wing an obvious choice. A major consideration in tail placement is the

relative location of the tail and the propeller slipstream; it is desirable to have the tail out of the

propeller slipstream for better aircraft handling qualities and avoidance of tail fatigue. The ECTOL is

configured with the engine nacelles mounted on the low wing, so the tail is higher than the propeller

centerline by approximately the fuselage height. This separation is adequate for any slipstream effects to

be negligible at operating angles of attack, as a study of similar aircraft verified (Ref. 9).
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The wing-nacelle integration was driven mainly by the structural considerations of the propulsion

system. A preliminary structural analysis of the wing-nacelle, as well as considerations of propeller

distance to the ground and associated landing gear length, were performed in this design.

v

v

Fuselage Design

Initial fuselage sizing was driven primarily by the mission requirement of 30 passengers and the

seating arrangement. Three basic seating arrangements were considered: two, three, and four abreast. The

only benefits of two abreast seating would be that the passengers, sitting on either side of a central aisle,

would not have be seated shoulder to shoulder. There were four disadvantages to two abreast'seating:

first, the fuselage slenderness ratio (length/diameter) was very high (approximately 12) yielding

unfavorable skin friction drag compared with other layouts; second, the high slenderness ratio also

incurred high weight penalties due to the extra structure required to support the long, thin fuselage; third,

the small cross sectional area produced very little headroom in the cabin; and fourth, future possibilities

of stretching such a long fuselage would be remote. The four abreast arrangement, while having a much

more favorable slenderness ratio (approximately 5.5), excellent cabin room, and lends itself well to being

lengthened should the need ever arise, unfortunately had the highest cross-sectional area (calculated by

determining the width of the fuselage and projecting it into the vertical plane to form a square) and the

associated possibility of excess base drag. For the final configuration, three abreast seating was chosen

(similar to the Gulfstream American commuter and the Embraer Brasilia) as a good compromise. This

seating arrangement, with two passenger on one side of the aisle and one on the other yielded a final

slenderness ratio of 7.7. The final cross section of the fuselage is a square, 6.9 ft per side, which, with a

10" false floor above the top of the lower former, has an interior cabin height (aisle) of 5' 5". While this

interior height might seem low, the Fairchild Metro III SA227AC, has a maximum aisle height of 4' 9"

and the Embraer Brasilia has an aisle height of 5' 7", indicating that the fuselage sizing is comparable to

other current commuter aircraft (Figures 5-7).
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Figure 6. Fuselage Cross-Section
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Figure 7. ECTOL Cabin Cutaway
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Other advantages gained by using a square fuselage cross section in addition to extra under seat

storage are reduced maintenance and construction costs. Construction costs are not only reduced by

eliminating the need for a completely sealed pressure vessel, but also by the fact that simple, straight-

sided shapes such as squares are easier (and inherently less expensive) to manufacture. Maintenance costs,

particularly in the structural repair aspect, are considerably less expensive due to the use of FAR 43:13

maintenance regulations for unpressurized aircraft. The square cross-section of the passenger compartment

is carried from the aft wall of the baggage compartment, all the way back to the tail to preserve the

simplicity of the structure and keep it structurally sound. The only portion of the fuselage which is not

square in cross-section is the nose which blends into a spherical, aerodynamic shape.

Wing Design

The wing planform area of 382.4 square feet was determined from the ratio of maximum takeoff

weight to desired wing loading. Important parameters in the design of the wing were aspect ratio, taper

ratio, sweep angle, and thickness ratio. From the thickness ratio, the airfoil section was chosen.

The aspect ratio of 10 was decided upon by studying similar aircraft, such as the Shorts 360 and

the DeHaviland DHC-7 (Ref. 9). The high aspect ratio,wing yields a lower induced drag, though, a

weight penalty is incurred. The aspect ratio chosen is appropriate for the ECTOL.

The taper ratio selection process was a trade-off between available fuel volume and wing weight.

Higher taper ratios produce lower fuel volumes and higher structural weights. Fuel volume was dictated

by the needs of the propulsion system. Assuming a root thickness ratio of 0.15 yielded a taper ratio of

0.7. As with aspect ratio, a study of similar aircraft yielded similar taper ratios.

From Reference 6, the wing lift curve vs. angle of attack slope for subsonic, conventional,

straight-tapered wings with low sweep angles was obtained as a function of semi-chord sweep. This

relationship, with the cruise Mach number of 0.39, aspect ratio of 10, and section lift curve slope of 0.116

per degree, is shown below in Figure 8. From the figure, it was determined that a half-chord sweep angle

of zero would yield a maximum value of lift curve slope. Obviously, the maximum lift curve slope is

desirable so that a specified lift coefficient can be achieved at as low an angle of attack as possible. The

wing weight is also at a minimum and propeller slipstream effects are optimum when the half chord

sweep angle is zero (Ref. 6). Because of the low Mach numbers (0.39 at cruise) of the ECTOL, the wing

critical Mach number will not be attained and no wave drag will be associated with the zero sweep angle.

v

D
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Figure 8. Effect of Wing Sweep on Lift Curve Slope

From the estimated fuel volume, it was deterrdined that a thickness ratio of at least 0.14 was

necessary to accommodate the lithium and hydrogen peroxide storage from the relationship illustrated in

Figure 9. From Figur e 10 a thickness ratio of 0.15 was chosen to yield a satisfactory maximum section

lift coefficient; this thickness ratio produced a relatively low wing weight, as can be seen in Figure 11. A

NACA 63-215 airfoil was chosen as the wing section for the ECTOL.

V
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Landing Gear - _+ t

The landing gear must be capable of absorbing landing and taxi loads, as well as transmit part of

those loads to the airframe. Using the design process specified by Roskam, trade-offs and computations

were performed to determine the configuration and sizing of the gear.

Since the ECTOL cruises at 250 kts., a retractable configuration was chosen. A tricycle gear

configuration was selected for maneuverability and vision when taxing. Using the results from weight

and balance and the method dictated by Roskam, the loads for each gear leg were computed. The main

gear load, Pm was 5948.5 lbs The nose gear load, Pn was 4183 Ibs. The dynamic nose gear load was

calculated to be 6274.78 lbs. The loads necessitated a dual wheel configuration for both the main and nose

gears. Tire selection was accomplished by matching the load ratings and max. tire operating speed to the

smallest tire in the tire tables listed in Roskam. With the nose and gear tires sized optimally, there was

only a one inch difference in width and only a 3.5 lbs. difference in weight. In the interests of the

original goal of simplicity, it was decided to use the same tire on both the main and front gear. The tire

selected was a 18" x 5.5" 14 ply tubeless B.F. Goodrich tire. Strut-wheel interface, shock absorber stroke

length, and strut size were then computed using the Roskam method. The clearance between the strut and

tire which included a safety factor of 2 was one inch. The maximum kinetic energy that the main gear had

to absorb was 16,219.77 ft. ibs. This was done with the tires previously mentioned and a 3.76 in.

diameter shock with a stroke of 10.98 in. for the main gear, and 4.84 in. for the nose gear. After a trade-



v IO0

off study, an anti-lock brake system was chosen. An analysis of the tip-over characteristics of the

landing gear placements revealed a Y-angle of 46.33 ° which is less than maximum allowed for tip-over

stability (Appendix). The ground clearance was complied with the limits given in Roskam (Appendix).

A chin tire will be required to avoid spray from a wet runway. The points of the main gear legs

corresponds with the back spar of the wing, thus alleviating any additional structure requirements

(Appendix). The retracting mechanism chosen for the main gear was an inward folding gear leg with a

folding main strut (Figures 12 and 13). The forward gear is the same mechanism but retracts back. The

floor of the fuselage above the retracted wheel compartment had to be raised eight inches to allow enough

room for the wheels, thus that set of seats will not have any under-seat space.
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Empennage and Control Surface Sizing

The empennage and control surface sizing was done using methods outlined in References 6 and 8.

Stability and control analysis were performed with the ECTOL design with stability considerations

leading to the sizing of the horizontal and vertical stabilizers; control considerations were used to size the

elevator, rudder, and ailerons. The results of the stability and control analysis often lead to radical design

changes if the aircraft cannot meet accepted standards of handling and ride quality. However, the ECTOL

design was fortunate enough to be able to meet stability and control requirements through appropriate,

conventional empennage and control surface design.

The horizontal tail was sized for the furthest aft center of gravity limit, because the shortest

moment arm from the tail to the center of gravity would dictate the largest, and thus the critical, tail

size. As with the wing design, the horizontal tail aspect ratio was chosen from studying similar aircraft

(Ref. 9). Because tail induced drag is not a consideration, a lower aspect ratio would be desirable to keep

structural weight to a minimum. An aspect ratio of 4.5 was chosen for the ECTOL horizontal tail. In a

similar manner, a taper ratio of 0.7 was selected. A NACA 0012 section was deemed appropriate for its

symmetry and thickness ratio appropriate for the low subsonic speeds of the ECTOL. To find the area, a

static margin was decided upon; the value of 0.08 w'as_:believed to be a good balance betweentstability and

control, with an inclination toward stability. A final horizontal stabilizer area of 74.6 square feet was

computed.

The aspect ratio of 2.0, taper ratio of 0.7, and the NACA 0012 section were chosen using the same

methodology as for the horizontal tail. The horizontal tail sizing was done again for the aft center of

gravity (C.G.) limit, and the area was driven by the desired value of the stability derivative CnB, the

coefficient of variation of yawing moment with sideslip angle. From Reference 6, a value of 0.10 was

chosen as appropriate for the ECTOL. The contributions of the wing (very small) and the fuselage

(destabilizing) were computed, and a final value of 38.5 square feet was obtained for the vertical

stabilizer. Initially, this value seemed small; however, considering the long moment ann for the ECTOL

tail and studying the ratios of tail area to wing area for similar aircraft (Ref. 9), showed'that 38:5 square

feet was reasonable.

The elevator was sized using the aft C.G. limit and a downwash value of 0.40. Two flight

conditions were considered: approach and takeoff. During approach, moments were calculated about the

C.G., while during takeoff the moments were taken about the main gear. Again using the method from

Reference 6, approach was found to be the critical condition, yielding a ratio of elevator area to

horizontal tail area of 0.50. Sizing the rudder was done similarly to the elevator sizing, with the

following cases being considered: one engine out (with the worst case being at takeoff, with high thrust

and low dynamic pressure), and a cross wind equal to 20% of the aircraft velocity (FAR regulations) at

u
V
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both cruise and landing. The cross wind landing was the critical case, producing a ratio of rudder area to

vertical stabilizer area of 0.36.

The aileron was sized using the methodology of Reference 6, and was driven by the desired rolling

stability and control of the ECTOL. Ailerons of 30% chord, running from 80% half wing span to the

wing tips, were determined to sufficient. The ailerons did not interfere with the designed Fowler flap

configuration, avoiding the use of a flaperon-type of system.

Propulsion system

In the past, the predominant problem with electric propulsion has been the weight of the fuel

system. With the improvement of lithium based fuel cells, this problem has been solved. In a report

written by A.D. Galbraith entitled, Electric Propulsion for High Performance Light Aircraft (1979)

(Ref. 3), such a fuel system was designed for use in a Beech Bonanza model 35. In 1981, Hughes

helicopters in conjunction with A.D. Galbraith, designed a similar system for use in a TH-55A helicopter.

This same technology, now as much as 11 years old, was proposed for the propulsion system in a 31

passenger transport.

The 30 passenger ECTOL aircraft is propelled by four electric motors, each rated at 750 hp (560

kw) and 20,000 rpm. Each motor drives a 3-blade,-constant-speed, fully-feathering propelll_r with

spinner. The motors are fueled by electric current at 300 volts and 1866.7 amps at full throttle.

Resources suggest that an electrical motor of this size has never been built. However, Gould electronics

has built a 6 phase AC induction motor rated at 300 hp with a 3.9 hp/lb power density. With the addition

of an inverter and gearbox the power density is reduced to 2.6 hp/lb. Incidentally this motor and motors

of similar design have a 97% energy efficiency. For the ECTOL, this density was scaled up for a 750 hp

system. This resulted in a motor system weighing a mere 288.5 lb. Using the same methodology, the

dimensions of this system were calculated to be 1 ft. diameter by 2.38 ft. in length (Ref. 4).

Each motor is supplied by 2 fuel stacks connected in parallel, resulting in a total of 8 fuel stacks

for the aircraft. With this system, if a fuel cell should fail, half power can still be delivered to the

engine. Each set of fuel stacks (two in each nacelle) is fed electrolyte by a single pump lbcated ita the

fuselage just in front of the wing. One back-up pump is available in the case of a failure. These pumps are

supplied electricity directly from the fuel stack after passing through a transformer.

Electricity is generated in the fuel cell via a chemical reaction between lithium (the cathode) and

hydrogen peroxide (part of the electrolyte). In this reaction an electric potential of approximately 2.2

volts are generated, after certain losses (which will be explained later) are taken into account. This

parameter is important because it determines how many reactions must be connected in series to get the

necessary voltage for the motor. For this reason, each fuel stack requires 150 cells. The current density

of the reaction depends upon operating temperature.

tr_¢
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At a temperature of 35 degrees Celsius, a current density of 0.75 amp/cm 2 is acquired, which can

be maintained indefinitely. At a temperature of 55 degrees Celsius, a current density of 1.5 amp/cm 2 is

acquired; however, because of decline in the ratio of current to current density, this current density can

only be maintained for about 45 minutes. The former parameter represents the cruise characteristics while

the latter represents the takeoff characteristics. Both parameters are important in determining the size of

the fuel cell. For the current requirement of i866.7 amps, a cross-sectional area of 1244.5 cm 2 is

required. Since there are two fuel stacks connected in parallel, a current requirement of only 933.4 amps

per fuel stack for takeoff is required. This results in an area requirement of 622.2 cm 2. While cruising,

the engines run at 75% power or 562.5 hp (420 kw). For a current density of 0.75 amps/cm 2 and a current

requirement of 700 amps per fuel stack, a a cruise cross-sectional area of 933.3 cm 2 is required. The cruise

area is therefore the dominating factor in determining the size of the fuel stack (Ref. 4).

The fuel stack operates by flowing electrolyte between the lithium cathode and a silver oxide

anode. Each anode is bonded to a neighboring cathode resulting in a sandwich configuration (Fig. 14). As

the lithium is dissolved into the electrolyte, a jackscrew system at the end of the stack maintains the

necessary spacing between cathode and anode (Fig. 15). The electrolyte is fed through the stack via a

common manifold. These manifolds offer a conductive path which results in a voltage loss across the

stack, however, the low solubility of LiOH keeps this loss to a minimum, giving the voltage potential of

2.2 volts per reaction. "- L k

V
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Once the electrolyte leaves the stack, it is fed through a cooling coil mounted along the inside of

the leading edge of the wing. The cooling coil serves two purposes: first, by cooling the spent

electrolyte, the lithium will precipitate forming LiOH-H20, aUowing it to be separated along with

gaseous hydrogen from the flow; second, the coil maintains the required temperature of the fuel stack.

The electrolyte which is not drained off is introduced back into the system and mixed with fresh

hydrogen peroxide (Fig. 16). The drained off electrolyte is collected in a tank inside the wings, where it

is stored until landing. Upon landing it is drained and taken to be recycled.

v
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The mission requirement of the ECTOL requires an energy of approximately 12.8 MBtu (3748.3

kW-hr). Lithium offers a theoretical energy density of 6 kW-hr/lb. With the system being implemented

4 kW-hr/lb is attainable, resulting in a 66.3% energy efficiency of the fuel stack. Using this energy

density, the weight of the lithium fuel is 937.1 lb. Unfortunately, such a fuel system requires the on-

board storage of the oxidizer, which in this case is hydrogen peroxide. For every pound of lithium

consumed, 5 pounds of hydrogen peroxide is required, resulting in 4685.4 Ib of hydrogen peroxide.

Other systems which collect the oxidizer from the atmosphere have been studied and offer the

advantage of not having to store the oxidizer on-board. These systems, however, suffer from low power

density along with the air anode having a limited lifetime and being quite expensive. For these reasons, it

was decided to use the more reliable hydrogen peroxide system and pay the weight penalty (Ref. 4).

In order to start the system, an auxiliary power unit (APU) is wheeled out to the aircraft and

connected to the electrolyte pumps; this is similar to thc. method used to start conventional transport

aircraft. However, instead of connecting the APU to the compressor of the turboprop engine, it is

connected to the electrolyte pumps.

There are some obvious advantages to operating an electrical propulsion system, such as the one

designed for this aircraft. However, there are also drawbacks which need to be taken into account. The

most apparent of which is the weight of the fuel system. In this system, lithium produces about 13.65

kBtu/lb; however, the weight of the hydrogen peroxide' must also be taken into account, resulting in

approximately kBtu/lb of reactants. In an internal combustion engine, somewhat more fuel efficient than

a turboprop engine, about 10.236 kBtu/lb of gasoline is achieved. The internal combustion engine, of

course, takes its oxidizer from the air. Other disadvantages to this system include the cost of the lithium

which is currendy $20/lb when purchased in relatively small amounts. The recycling process has been

estimated by A.D. Galbraith to cost somewhere between $1.00 and $0.65 per pound of recycled lithium.

The recycling process requires electrical power from some source which could lead to air pollution (Ref.

4).

The advantages of operating such an aircraft are numerous. The noise of the aircraft will be

reduced due to the ability of electrical motors to operate quietly. Since electrical engines are very reliable

and easily maintained, and because of the parallel fuel stack configuration being used, system safety is

enhanced. By using electric motors engine lifetime will be extended by orders of magnitude compared to

conventional airplane engines. Air ducts are very small for electrical engines, resulting in increased

performance due to reduced drag. Because the fuel remains on board throughout the flight the C.G.

movement is minimal. The combination of fuel stack and electric motor is very energy efficient, about

64%, compared to the 40% energy efficiency of turboprop engines. In addition, electric propulsion doesn't

require the use of fossil fuels.
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Avionics

Since one of the driving forces in this design was affordability, an automated flight control

system was chosen to be used. This system cuts pilot costs by over 50% since the single, backup pilot can

be paid less than a regular pilot. In addition to the automated flight control system mentioned in the

California Corridor chapter, an optimizing computer engine/fuel cell control system will be incorporated

into the ECTOL. The engine/fuel cell control system will allow the ECTOL to be a completely

automated airplane. In the event of failure of the automated flight control system, or the automated

engine/fuel cell control system the pilot aboard will be capable of continuing the mission. Incorporated

in the computer will be a global positioning system using satellites to continuously update the aircraft's

position. These systems, with the exception of the automated flight control, should be commonplace by

the year 2010 and will fit within the goal of affordability.

Weights and Balance

At the end of the first design iteration, a detailed weight analysis was performed using the

methods, based upon empirical data, outlined in Reference 6. The result gave a new gross takeoff weight

that was lower than the initial assumption; the initial design process was then reiterated with the new
4

weight, leading to changes in the entire design, from wing area to drag polars. The final iteration values

of the ECTOL component weights are shown below in Table I. In the Appendix, the weights along with

their corresponding distances from the aircraft nose are listed. These distances were used to find the center

of gravity (C.G.) of the aircraft, an extremely important aircraft parameter since many designs are driven

by C.G. location. The vertical C.G. location was also determined, so that ground stability with the

designed landing gear could be assured.

The electric propulsion system of the ECTOL is very unconventional in the respect that the C.G.

travel is minimal because no fuel is burned; the only C.G. travel in flight would be due to the shifting of

weight from the the lithium rods to the slurry tanks, which could be eliminated through careful design.

The significant C.G. travel in the ECTOL would be due to asymmetric passenger loading, that is, more

people in the rear of the plane than the front. A C.G. excursion envelope (Appendix) was obtained by

calculating the C.G. location for the worst cases of only passengers in the rear, and only passengers in the

front, both with fuel (for flight) and without fuel (ground refueling). The wing location was varied

until the C.G. travel was within reasonable limits for stability and control considerations. It is generally

desirable to have a C.G. location at 35% mean aerodynamic chord (MAC) because, for subsonic flow, the

aerodynamic center (a.c.) of the wing (assumed to be the a.c. of the aircraft) is located at approximately

25% MAC; the C.G. location should be about 10% of the MAC aft of the a.c. for the best stability and
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control characteristics of the transport vehicle. Moving the C.G. further aft of the a.c. gives greater

control and degrades static stability, while moving the C.G. forward has the opposite effect.

Table I. ECTOL Component Weights

Component Weight 0bs)

Wing 1137

Fuselage 1393

Horizontal tail 170

Vertical tail 212

Engines 1800

Fuel cells 5622

Fuel tanks 5025

Engine controls 700

Propellers 900

Surface controls 446

" L
Electrical system 1070

Indicators 59

Furnishings 1275

Air conditioning 200

Crew and pax 6765

Performance

The analysis of the ECTOL aircraft involved the calculation of several performance parameters for

varying flight conditions. These parameters are listed in the following table:
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Drag Polars

Table II. Performance Parameters

• Lift coefficient vs. angle of attack
• Lift coefficient vs. drag coefficient
• Rate of climb vs. altitude

• Power required and power available vs. velocity
• Lift over drag ratios

• Thrust required vs. velocity
• Stability derivatives
• Stall velocity
• Maximum lift coefficient
• Load factor

• Maximum thrust of propellers

The drag polars were calculated using equations from Nicolai (Ref. 6). Parasite drags were

estimated for the wing, nacelles, body, empennage, and tlqe flaps at three flap configurations (clean,

takeoff, landing). In addition, the Oswald efficiency factor was adjusted for the three flap settings. With

the flaps fully extended at a 30 degree angle of deflection, an Oswald efficiency factor of .70 was used.

For takeoff flaps the Oswald efficiency factor was raised to .75. The drag polars are labeled as Figures

17 through 20. The calculations for these drag polars can be found in the appendices.

v
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Power Required, Power Available, and Rate of Climb

Electrical power plants have an unique quality among aircraft power plants, it is absolutely

insensitive to altitude. Thus, the ECTOL power available is constant. With variable pitch propellers, the

efficiency of the propeller stays relatively constant. The power required varies as a normal aircraft since

Pr depends on drag and velocity (Fig. 21). Rate of climb was calculated by the excess power method

(Ref. 2). Since power required is dependent on altitude, rate of climb is also dependant on altitude (Fig.

22).

V
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v
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Lift over Drag Ratios

Using the aerodynamic data of the aircraft, it was possible to calculate lift over drag ratios for

the cruise, landing, and takeoff regimes. L/D max for cruise turned out to be the maximum L/D among

the three as expected. From Figure 23 the point of L/D maximum occurs at 200 kts.
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Thrust Required vs. Velocity

Induced and parasite drag were calculated using equations from both Nicolai (Ref. 6) and

Anderson (Ref. 2). These quantities were plotted against velocity in Figure 23. The curves are for the

clean configuration at the cruise altitude of 8500 ft. Parasite drag quantities were the same used for the

drag polar calculations. According to the figure the minimum thrust required occurs at a velocity of 200

kts. At the cruise velocity of 250 kts the thrust required was calculated to be 1850 lb.

Stability Derivatives

The aircraft was determined to be statically stable by using the process stated in Nicolai. The

stability derivatives were calculated with the same process and are as follows

v

Crn5 -2.37

ClB -. 11

Ctsa .26

Crna -.56

c,,-e .lO

CmSe - 1.58

Propeller Performance Calculations

Propeller characteristics were chosen by comparing propellers of similar aircraft and engine

horsepower. For a transport aircraft with 750 hp engines, a 3-blade propeller with an 8 ft diameter was

typical and therefore applied to the ECTOL. Other characteristics chosen for the propeller were a design

lift coefficient of 0.500 and an activity factor of 140. These numbers were chosen in order to stay within

conservative boundaries. Since a constant-speed, variable-pitch propeller is being used, the rpm and

consequently the integrated design lift coefficient, both remain constant at varying velocities and'

attitudes.

Hamilton Standard's "Generalized Method of Propeller Performance Estimation" (Ref. 5) was

used to determine the thrust produced by the motor and propeller. The data is limited to conditions when

compressibility effects are small. The maximum static thrust for a single propeller was found to be

1898.3 lb and 650 lb at cruise. This propeller comfortably meets the aircraft's thrust requirements. The

constructed propeller performance charts can be found in the Appendix.
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Materials/Structures

The extensive use of aluminum for the aircraft structure is incorporated in the ECTOL design in

order to achieve one major goal, affordable cost of manufacture and subsequently ease of n,ass production.

The ECTOL aircraft features a monocoque fuselage, low wing, retractable gear and conventional tail

design.

The fuselage, a box shaped monocoque structure, consists of aluminum skins riveted to frames,

formers, bulkheads, stringers and keelson beams to insure multiple load paths throughout the aircraft to

the wing spars.

The wings are of cantilever low wing design incorporating standard wing structure design, 24" rib

spacing, stringers and skin. The front spar is located at 20% cord and the rear spar is located at 65% cord

allowing for adequate volume for electrolyte and lithium tanks. The wings incorporate a typical carry

through multiple spar fail safe system.

The vertical tail of conventional design is incorporated into the fuselage with the use of an aft

bulkhead and keelson beam attached to the vertical spar. The vertical tail is then attached to the vertical

spar, the main load carrying member of the vertical tail.

The horizontal tail also incorporates the aft keelson beam and aft bulkhead to attach the horizontal carry

through spar to the monocoque fuselage. "- .L t

With a cruise speed of 250 kts. the maximum positive wing load factor (n) is 2.74 with a

maximum negative wing load factor of 1 (Appendix). At the maximum positive wing load factor of 2.74,

assuming an elliptical wing lift distribution and that every square inch of the wing creates an equal

amount of lift (k), the maximum wing bending moment of 500,000 ft.lbs was calculated.

The ECTOL load paths incorporate the monocoque fuselage to carry all loads induced on the

aircraft to the forward and rear wing spars. The wing to fuselage attach points, wing intercostals, are the

primary load transfer points. For the loads induced on the fuselage the monocoque structure, a load

carrying structure transfers the loads to the spars via the wing intercostals. For loads induced on the

vertical tail the force is carried down the vertical spar into the aft bulkhead and aft keelson beam where it

can be dispersed into the aft fuselage and subsequently transferred to the wing spars. For 'loads induced on

the horizontal tail the force is transmitted by the carry through spar into the aft bulkhead/keelson beam

assembly where it is dispersed into the fuselage.

Cost Analysis

An initial cost analysis, using Reference 6, was performed for the ECTOL. Assuming 4 aircraft

for development, test, and evaluation (DT&E) and a production run of 500 aircraft, and amortizing the

v
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DT&E cost over the production run, a unit cost of $3.83 million was obtained. This value appears to be

low, perhaps indicating the insufficient methodology of calculating the costs of electric propulsion. More

accurate methods must be determined to better estimate unit cost. Table III presents the distribution of

total DT&E costs, total production costs, and determination of unit cost.
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Table III. Cost Estimation.

Total DT&E Cost:

Airframe engineering

Development support

Flight test aircraft

engines
avionics
manual labor
materials and equipment

tooling
quality control

Flight test operations

Test facilities

Subtotal

Profit (10%)

Total DT&E cost

Total Production Cost: " L

Engines

Avionics

Manufacturing labor

Materials and equipment

Sustaining engineering

Tooling

Quality control

Manufacturing facilities

Amortize the DT&E costs over 500 aircraft:

Unit cost = $ 3,829,000

Subtotal

Profit (10%)

Total

$ 15,546,000

3,890,000

71,368,000

$ 3,450,000
6,000,000

27,675,000
3,387,000

27,258,000
3,598,000

1,801,000

o

$ 96,205,000

$ 101,866,000

$ 345,000,000

750,000,000

319,752,000

121,798,000

22,068,000

47,687,000

41,568,000

o

$ 1,647,873,000

164.787.000

$ 1,812,660,000
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The direct operating cost was calculated using a method from Reference 10. Since electric

propulsion is being implemented, special considerations had to be made in determining the operating cost.

As can be found in the Appendix, the cost of the airplane fuel for the 570 mile mission was calculated to

be $2350.25. This takes into account predicted costs to manufacture and recycle lithium along with the

cost of hydrogen peroxide. When including the other components of operating cost an overall D.O.C.

was calculated to be $0.26/pass mile. These calculations were compiled with a computer program which

can be found in the Appendix.

v
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Conclusion

The initial iterations of the ECTOL dcsign process revealed no insurmountable problems with

electric propulsion for use in transport aircraft. This is significant, suggesting that further research in

applications of electric propulsion in aircraft design is warranted. Other forms of the electric propulsion

system, such as an air cathode system partially or completely replacing the stored oxygen (stored in the

form of hydrogen peroxide), should be investigated. Further iterations of the ECTOL design would be

necessary to more accurately describe the vehicle structure.

Automated flight control, though certainly not a new technology, has yet be proven in a totally

automated passenger aircraft. The avionics and logistics of this system appear to be manageable with

today's technology; the major unknown is the implementation of a fully automated ECTOL is public

acceptance. Whether or not people would be willing to fly on an airplane with no pilot at the controls

remains to be seen, and should be studied.

A final area of recommended research is in the refueling method used for the ECTOL. Because the

refueling time is estimated to be the critical factor in turnaround time for the ECTOL, more efficient

refueling would be very cost effective. A possible solution would be the use of modular refueling,

whereby a new module containing the lithium rods for the fuel cells could quickly replace a spent module.

The ECTOL design produced in this early design phase met all required specifications; the ECTOL
j

is a clean and efficient aircraft that will serve the California Corridor, integrating as planned with all

CAT system components.
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MAG-LEV TRAIN SYSTEM

=_

Introduction

Today's transportation problems of over crowded highways, airways, pollution, and noise cannot

be solved with existing transportation systems. Certainly, our present day railways, motorways, and

airways will not be able to meet the increasing demand of traveling population. It would appear that the

key to future high speed mass transportation will lie in" the innovative technology of superconducting

magnetic levitation trains. To this end a number of research groups throughout the world are

investigating this technology (Ref. 1).

The magnetically levitated train (Mag-Lev) is designed to aid and assist in solving the

transportation problems of the California Corridor for the 2010. Although the present demand would

enable the Mag-Lev to operate as a single vehicle transportation system, the Mag-Lev was designed as a

integral part of exiting mass transit systems, such as BART and future systems such as the LA Metro and

the Corridor Access Port or CAP. By integrating with other systems all modes of transportation are

made more convenient and versatile to the user and each transportation vehicle is complimented by the

other, including the Mag-Lev. The Mag-Lev would add a new dimension to public transportation by

drastically reducing the journey time between major city centers (Ref. 2 ).

Passenger Demand

Passenger demand analysis was performed, as shown in Table 1, to determine the volume of

travel between city pairs. Air travel demand was based on the Interstate Travel Demand Report, while

automobile travel demand was determined using the Las Vegas Super Speed ground Transport Report and

the Boeing Report (Ref. 4, Ref 2, Ref 3).

V



v 129

Based on information obtained from the Las Vegas Super Speed Ground Transport Report,

automobile travel was approximately 67% of total demand between city pairs (Ref 2). It was estimated

that 35% of the automobile travel between any chosen city pairs could be influenced to ride the Mag-Lev.

Another report on airport usage estimates that between 16000 and 24000 additional passengers a day can

be expected to ride due to the diversion of out of state and country flights from such places as LAX and

SFO to the CAP facility (Ref. 5). Additionally, due to the novelty of a magnetically levitated train

traveling in excess of 300 miles per hour, it is expected there will be an additional 2,000,000 riders per

year (Ref.2).
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Table 1. Passenger demand analysis

J _ F=! TM_m,_._l_L PACE _S

OF POOR QUALITY

City psir 4emond figures for the California Corridor Data generated by the M_.a, L_. _r

,,qgroup. 18 May 19o..
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A IR _" AUTO _-i, TOTAL

CITY PAIRS PAX/DAY PAX/DAY DISTANCE PAll/DAY

S.F.-L.A. 60,000 %008 4'5;2 63,008

S.F.-S.D. 3.636 12,538 557 16,174

S.F.-SAC. 4,618 7,534 80 12,152

S.F.-Fresno 3,520 92:_ 200 4,449

S.F. - t3_:ersfield 2,912 288 300 %200

L.A. - c,.:.e,C 11.160 2,100 412 13 ,_.?6Cl

L.A.-Fresno 4.444 l,_,94 212 6,038

L.A.B._kercfield ", '-, a'-- 12- ,..-i_0 4,,,'3 I 7,403

L .A.- S.D. 3,;'q84 47._00 12j .50,384

SAC -Frecno _,;68 40 200 608

- I ,-,t; _,0 3,390o_1..; _b_uCkton l,_,l ,' ....

S . ,.jto,ckton-S.F. %557 4 c4"2 50 8,509

SAC - BaI'ersfiel,J 64 79 300 143

S.D.- SAC 635 100 537 735

S.D.- Fresno 252 83 337 335

S.D. - Bekersfield 213 ! 04 237 317

TOTALS 102.910 87,195 200,105

*(Ref,4)

** (Totc-d Travel X 67% Auto X 35%) = No. Cars/Day. (Ret'. 1&3)

1 ) Airport stl.Mies indicate that between 16,000 and 24,000 p._senger_ pet" day from out

of'state and country :411 arrive at the CAP (Ref,. 5).

C_"2) La_, Vego._ _,oGT Report indicates 2,000,000 pas_enger_ per year will ride dt_ to

novelty of" magnetic levitation (Ref,. 1).
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Routing

Beginning in the northern most area and working south, the system services Sacramento to

Stockton using existing Amtrack routes along highway 99 interfacing with BART at Concord ( Fig. 1).

The Mag-Lev will also service Stockton to Fresno following routes along highway 99 using existing

Amtrak routes. The system will then follow existing Amtrak routes along 99 with the next stop at

Fresno. From Fresno track will be built to the CAP facility near Kettleman City. At the CAP

facility passengers traveling via aircraft can board the Mag-Lev and continue to their destination whether

it be south or north. Track needs to be built to connect the CAP facility to Bakersfield. Additionally,

track will be built to connect Bakersfield to the Los Angeles area, stopping in Glendale, along interstate

5. Once in the Los Angeles area, the traveling population has the ability to interface with the Los

Angeles Metro at the existing downtown Amtrak station. From Los Angeles the route splits and goes

south and east. The southern route will have a station built in LA Mirada to interface with the LA

Metro line which is expected to service LAX. The Route continues southbound along existing coast

routes stopping at San Diego. From the San Diego area there is existing transportation to the boarder of

Mexico. The eastern routing from Los Angeles follows existing Amtrak routes, along interstate 10,

stopping in Ontario (Ontario Airport), and continuing to Indio.

This routing was chosen because of the higii _,olumes of travel done between these cJlties as shown

from the demand studies (Ref. 2, 9). If future studies indicate a particular area or city has a high

enough demand to warrant a stop there, then adding additional stations will be considered. However, at

this time it is felt that the proposed stations will most adequately complement the overall CAP

transportation system.



132

oncord

/

"---- Mag-Lev
.... BART

......... LA .Metro

s acra me nto_Xx

Stockton

Fresno

CAP

Ontario

Indio

San Diego

Figure 1 l_ol_isg of Mq-Lev



133

Scheduling

The scheduling of the Mag-Lev will be based on the demand of the city-to-city travel and the

peak hour usage of 6:00 - 9:00 am and 3:00 - 6:00 pm. During peak hours, 62 Mag-Lev vehicles will be

transporting a maximum of 62,000 passenger at any one time. Departures from terminals will be every 5

minutes in each direction, enabling 72 departures from each station. During the off peak hours, 9:00 am -

3:00 pm and 6:00 - 8:00 pm, the running fleet of Mag-Lev vehicles will be reduced to 42 with a departure

interval of 10 minutes from the terminals. 8:00 pm- 6:00 am is the night operation time, where only 39

Mag-Lev vehicle will be required to meet the demand.

The 24 hour running time was established to be able to service the CAP at all times. Because of

the low noise that the Mag-Lev produces, operation at these hours should not be a problem. To make the

Mag-Lev more acceptable during these hours the max cruise velocity will be reduced to 170 kts, where the

lower velocity will create less aerodynamic noise and operate at the bottom of the drag bucket, thus

requiring less power to operate.

Should the demand show a need for express Mag-Levs (i.e.., Los Angeles to San Francisco, non-

stop) then scheduling will be incorporated so the overall system is not compromised. Express Mag-Levs

would require guideway switching. The stopping Mag-Lev would be switched off the main guideway at

the terminal to let the express Mag-Lev pass the l(Jhding Mag-Lev. t

Vehicle Design

The Mag-Lev Train has a 100 passenger capacity with option for 2 of the seats to be folded to

provide space for 2 handicapped persons. These handicapped spaces will be positioned near one of the doors

for easy accessibility. There are two 32 inch wide doors located on the right side of the train to allow

people to enter 2 abreast for minimum passenger loading times. There are 50 windows located along the

length of the passenger train. Safety glass, similar to that used on aircraft, will be used for all

windows. Air conditioning and heating will be available for operation in adverse weather conditions to

maintain an ambient temperature of 71 ° F. No smoking is allowed on board the Mag-Lev train. ,There

will be 4 watts of lighting per square foot of floor space down the center of the train, with an individual

4 watt reading light available for each seat. There are three emergency hatches located along the ceiling of

the train.(Figure 2). Bathrooms are located in the forward part of the train behind the cockpit. The

cockpit has capacity for two crew members and will contain all the radio, electronic, and override

equipment. Overhead compartments will allow 3.23 cubic feet of carry on baggage per passenger. For

passengers transporting more than 3.23 cubic feet of luggage, a baggage compartment in the rear of the

train will be available.

v
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The baggage compartment have a fully automated loading system. The Mag-Lev train has a

lightweight body made of an Aluminum alloy stressed skin/stringer frame structure with fibre-glass

insulation between the outer skin and cabin liner (Ref. 6).
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Guideway
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Along the 600 miles of proposed city-to-city routes runs a double guideway structure enabling

the Mag-Lev vehicles to travel in both directions at the same time. A double guideway structure was

chosen over a single guideway with passing lanes because of the high frequency of vehicle travel at peak

hours. The guideway structure consist of elevated straight flat concrete slabs that house the aluminum

levitation strips, 3 phase LSM winding, and null-flux guidance loops (Fig. 3). Concrete being very

resistant to the elements of weather, the maintenance of the guideway structure should not result in

frequent down time for repairs.

The dynamic loading of the concrete is relatively small when compared to the weight of the

levitated Mag-Lev vehicle. However, the guideway still must be able to support the weight of the Mag-

Lev vehicle when it is traveling slower that 47 kts or if there is a power outage of the levitation system.

To reduce costs, the guideway will be prefabricated in 80 ft sections of prestressed concrete. The

prefabricated sections will be joined by three connectors at the vertical support structures and will allow

2 inches of expansion caused by an increase in temperature (Fig. 3).

For safety reasons the Mag-Lev vehicle will always be elevated a minimum of 12 ft by the

guideway structure. On the majority of the city-to-city routing the guideway height clearance will be 24

ft to allow for existing wheel on rail trains to operate _along side and beneath the guideway IWig. 4 ). The

height of the guideway vertical supports will be dictated by making the guideway fiat and allowing

smooth transition to at grade conditions (Fig. 5). It is important for the guideway to be flat or for

transition to occur smoothly for passenger comfort. The radius of the guideway in the vertical plane

depends on the velocity and a maximum force of 0.5g (Fig.6). At a cruise velocity of 270 kts, a wavy

guideway can produce similar passenger discomfort to that of air turbulence to air carrier passengers.
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Not only is a fiat guidcway important for comfort, but any turns will induce lateral g forces on

the passengers. The guideway turn radius will be limited to a 0.1 g lateral force, which is the generally

accepted limit for passenger comfort (Fig. 7). If terrain dictates a turning radius resulting in higher g

forces, the velocity of the Mag-Lev vehicle must be reduced. Banking of the guideway will allow for

tighter turns, but will be limited to 5° in case a vehicle stops on a turn due to mechanical or electrical

failure.

The parallel distances between the guideways is dictated by aerodynamic pressure forces induced

by the Mag-Lev vehicles passing in opposite directions. The pressure forces created will cause an impulse

loading, first pushing the walls of the vehicle inward then suddenly reversing the load and pulling the

walls outward. A sufficient distance is needed between the passing vehicles to reduce the effects to where

fatigue to the vehicle structure is minimal and passenger comfort is not compromised (Ref. 6). By using

passing separation distances of existing rail services and extrapolating for the Mag-Levs velocity range, a

passing separation distance of 11 ft was determined (Fig. 8).

The Mag-Lev will be able to switch guideways by the use of a flexible section of guideway that

is able to move over from one guideway lane to another by the use of hydraulics. Switch guideways are

important to the Mag-Lev system so that a vehicle stopping at a terminal will be off the main guideway

enabling an express Mag-Lev to pass by. The location of the guideway switch will be 2 miles from a

terminal when the needed land is available. If the needed land is not available then the size of the

guideway switch and location will depend on the velocity of the decelerating/accelerating Mag-Lev and

the 0° bank turn radius at that velocity (Fig 9.).

v
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Costs

The Morlok cost analysis program was to be a fair way to judge all modes of transportation proposed

for the California Corridor. First and foremost, the problem lay in the fact that the Morlok Program was

designed for cost analysis of a locomotive, high speed rail, which is considerably different than a magnetically

levitated train system. Since, at this time the Morlok Program is not lending itself to be a fair comparison, the

cost analysis using this mode is not addressed. A brief explanation of cost analysis can be found in the CAP

report under Analysis for the Magnetic Levitation Train, Hydrogen Tilt Rotor VTOL, and Electric CTOL

California 2010 Project. At this point it is felt that the present cost analysis was comparable to the other

systems.

System Flexibility

System flexibility considers the ability to meet the demands of the traveling population. The Mag-Lev

route is a static system. Should a large group of individuals decide they want to travel to say, Mexico, a place

which is not serviced, the Mag-Lev system could not meet the immediate demand whereas another system

could. However, the Mag-Lcv system could be extended to that area to meet the demand, though it would not be

instantaneous. One advantage the magnetic levitation system does have with respect to meeting immediate

demand is the ability to add more trains to the system and increase capacity as demand deems.

Mag-Lev Noise

When two sounds are heard consecutively, a minimum change of 3 dB is needed to perceive the change

in noise level. With a time interval of 5 minutes, which is the peak frequency of the Mag-Lev, a change of 5

dB would be required to subjectively perceive the increase in noise level. In populated areas the Mag-Lev runs

along or near heavy road traffic which is rated at 65 dB. Therefore the noise produced by the Mag-Lev is just

perceivable in these areas of operation at cruise velocity (Ref. 7). A further analysis in the comparison in the

noise produced by the other vehicles in the CAP system can be found in Appendix F.

Mag-Lev Pollution

The magnetically levitated train system is "relatively clean (any pollution is confined to central power

stations)." This does not mean there is no pollution associated with magnetic levitation, there is. When

different systems are compared as on Figure 10 of Primary Energy Consumption, the Mag-Lev is considerably

below the aircraft and comparable to the automobile.
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Insofar as pollution is concerned, since no new power generating plants are proposed, this element

of the proposed system would not impact air quality. In the building stage however, construction related

180000__ activities ..........mayimpact local air quality though site specific and temporary.

i .0001
0 I00 200 300

Figure 9 Switch Placement Curve

Velocity (kt=)
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Levitation System

A contact-free electromagnetic suspension derives from the phenomenon that oppositely directed

electric currents in two parallel conductors repel each other. With the development of the superconducting

magnets over recent years, a lightweight source of intense magnetic fields has become generally available.

Superconductivity, or the state of zero electric resistance occurs in certain metal and alloys such as

Niobium Tin, Niobium Titanium or Yittrium-Barium-Copper-Oxide. When superconductors are cooled to

temperatures in the range of 77K to 94K (-320 F to -290 F) larger currents can be carried in relatively

small conductors (Ref. 1,8).

Two ordinary electrical conductors spaced 12 inches apart each with current of 100,000 amperes

can support a vehicle of 680 kg per meter (450 Ibm/ft.) (Fig. 11). With the advent of superconductivity

the current of any given cross sectional area can carry more than 100 times as much current than non-

superconducting materials such as copper (Ref. 9)

The levitation system used by the Mag-Lev is a repulsive force, or electxodynamic system.

Theoretically, as shown in Figure 12, a current runs about a moving superconducting coil on the Mag-Lev

that passes over a stationary coil. The current triggers magnetic flux which penetrates the passive coil as

the moving coil passes over it. As long as the magnetic flux through the passive coil is either increasing

or decreasing, it induces an opposite current in the passive coil which repels the moving coil.
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The repulsion suspension system of the Mag-Lev consists of passive coils sunk into a concrete

guideway, with superconducting magnets on board the vehicle ( Fig. 13) A sheet conductor in the form of an

aluminum strip track is exposed to a rapidly changing magnetic field as the vehicle travels over it (Fig. 14). As

a result, circulating eddy currents are induced in the aluminum opposing the field and preventing it from

penetrating the track. As shown in Figure 15, the flux lines are compressed in the air gap between the vehicle

and the track. Because of this flux compression, a magnetic pressure equivalent to:

B2/21.to

where B is the magnetic field strength at the track and 12o is the permeability of free space. The magnetic field

strength of the track of the Mag-Lev is 1 Tesla (T) and the permeability of free space is 4/I: X 10-7 T m/A,

thus the magnetic pressure is equal to 3.93 atmospheres. To get a "feel" for these units, we note that the

magnetic field of the Earth's surface is about 0.5 X 10-4 T (Ref. 10). The pressure can be produced over a

considerable area so that levitation of the Mag-Levs 34 ton, 100 passenger vehicle is possible.

The magnetic repulsion generates lift when there is opposite current in the passive coil. Only when

the moving coil is directly over the passive coils is there no change in flux. The repulsion weakens, causing

drag (Fig. 14). However, the faster the Mag-Lev travels, the less time the moving coils spend directly over the

passive coils. As can be seen in Figure 16, elcctrodynarr_ic drag decreases with increasing velocity, unlike

aerodynamic drag which increases with increasing velocity (Ref. I 1).
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Propulsion

I.J

The propulsion system must provide a thrust to overcome the aerodynamic drag of the Mag-Lev

and provide adequate acceleration and grade climbing ability. Additionally, thrust must be provided to

overcome the magnetic drag caused by levitation.

Since the Mag-Lev is magnetically suspended, the propulsion thrust is accomplished without

physical contact by the Linear Synchronous Motor or LSM. The motor makes use of the same physical

phenomenon employed for levitation, i.e.., the forces between parallel current-carrying conductors. As

can be seen in Figure 17, the LSM consists of 50 race track wound superconducting coils. These

superconducting coils are arranged in seven pods mounted centrally along the underside of the Mag-Lev.

To minimize interaction between pods, one end magnet in each set is made both narrower and weaker. The

size of the magnets is 1.74 feet long by 5.58 feet wide with a strength of 5 X 105 amperes turns (Ref 1).

Each magnet is superconducting and carries a total current of about 500,000 amps. The required cruising

thrust can be achieved by the use of a current in each aluminium guideway cable of 245 amps (Ref. 9).

The guideway winding consists of six stranded aluminum cables each abut .4 inches in diameter.

The cables spaced about 3.6 inches apart, are covered with standard electrical insulation and housed in the

concrete of the guideway (Ref. 9).

At a cruise speed of 270 kts the propulsio6- u-nit must provide a minimum thrust oftl0,500 pounds

to overcome the aerodynamic drag requiring a propulsion power of 6.5 mW. During acceleration

of .lg a total thrust of approximately 15700 lbf is required with a power limitation of 8 mW (Ref 6).

At low velocities, below 43 knots, the generated electrodynamie lift and guidance forces are

inadequate to suspend the Mag-Lev. The Mag-Lev vehicle is supported by semi-retractable tired wheels

along the underside of the Mag-Lev, until there is enough electrodynamic lift to support the vehicle.

Hydraulic power for the semi-retractable wheels and power for the other systems is generated by linear

generators. Ni-Cod 440V batteries provides the on-board power when the linear generator is not active,

i.e.., at low speeds (Ref. 12).

V
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The principle of operation of the Linear Synchronous Motor is shown in Figure 18 where the

magnet and guideway conductors are shown in cross-section. Currents away from the observer are

indicated by a cross, and toward the observer by a dot. Similarly-directed currents attract each other

while oppositely-directed current repel. The net thrust on the vehicle is forward. As the vehicle moves

forward the currents in the six guideway cables must be adjusted so that the cable carrying maximum

current is always positioned approximately on the central axis of the magnet coil above it. This is

accomplished by using 3 phase alternating current supply to the cable windings and adjusting the frequency

of this supply to the precise value required for the vehicle velocity. The propulsion magnets in Figure 19

are spaced 1.9 feet center to center. The frequency of the supply must be 122 Hz for a speed of 270

nautical miles per hour (Ref. 9)

The stator windings, or 3 phase track armature winding, shown in Figure 20, provides traveling

magnetic waves to which the vehicle magnets are synchronously linked. The flat split-three phase

winding each displaced _. / 3 from the other two is housed in the guideway between the two levitation

strips (Fig. 19). The stator is laid in sections, each 3.1 miles in length, which are sequentially energized

by trackside variable frequency inverters. The terminal voltage and current requirements of a single

conductor are about 6 kV and 500 amps (Ref. 1). The Mag-Lev has two conductors per pole separated by

abut 1/6 pole pitch (Fig. 20).
t

For realistic values, but assuming a fairly high traffic density ( and average loading of one train

every 5 minutes) the optimum energized length is between 1.4 and 2.7 nautical miles (Ref. 1). It might

be expected that this motor would be very inefficient in view of the fact that only 123 feet of a 2.7 NM

energized track is being used at any instant to produce power. However 75% of the power supplied by the

power conditioner to the track winding is converted into mechanical power. This efficiency can be

increased, if desired, by increasing the size of the cables or by reducing the track section length. Shorter

lengths would give a slightly higher efficiency but, in order to halve the overall losses (from 70 percent

efficiency to 85 per cent), the energized length must be reduced by a factor of 10 (Ref. 1). The values

chosen for this design were obtained from an optimization study which balanced the costs of cable, power

conditioning apparatus and electrical energy to obtain a minimum overall annual cost (Ref. 9).
J
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The major advantage of the LSM is that is requires no on-board power for propulsion. All the

power is supplied from the guideway. Additionally, the LSM can provide a retarding thrust to the Mag-

Lev for deceleration. The timing, or the phase of the guideway currents can be adjusted so that the

currents away from and toward the observer in Figure 18 are reversed. The magnitude of the deceleration

may then be adjusted by adjusting the magnitude of the current from the power conditioner. The LSM is

designed to provide normal deceleration of 5.3 X 10-4 NM/s 2 (.lg), and an emergency deceleration of 1.6

X 10-3 NM/s 2 (.3g). At this emergency rate, the vehicle can be brought from full speed to a stop in a

distance of about 1.75 NM and a time of about 47 seconds.

Guidance

The magnetically levitated train is operated over an elevated flat topped guideway and is guided

by the interaction of the LSM magnet array with figure eight shaped loops overlying the active LSM as

shown in Figure 21 (Ref. 6).

The complete levitation and propulsion system of the Mag-Lev can provide adequate guidance

forces. In the event of large lateral displacements due to, for example, strong wind gusts, guidance is

available from the repulsive interaction of the LSM array with the edge of the levitation strips. When the

Mag-Lev moves to one side, the edges of the propuf_i6n magnet induce currents in the edgestof the

levitation strips. These currents tend to repel the magnets and return the vehicle to its desired central

position. It has been estimated that the maximum side force obtainable in this way is equivalent to the

total weight of the vehicle and is therefore greatly in excess of that required even in severe gale winds.

The maximum electrodynamic restoring force has been found to be in excess of 67,400 pounds (Ref. 1).

While the interaction between propulsion magnets and levitation strips can provide adequate

stabilizing forces, there may be undesirable oscillations leading to poor ride quality. It is proposed to

damp these out by the use of guidance loops placed on the vehicle just below some of the superconducting

magnets (Ref. 9). If the magnetically levitated train traverses the loops off-center, the induced

electromagnetic force (EMF), produced by the changing magnetic field, in the open portion of each loop

are imbalanced and the net current is induced which tends to force the Mag-Lev back to the center" or "null

flux" position (Ref. 6).

v

v
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The null flux scheme has been designed to limit lateral displacement of the vehicle to 1.97 inches

due to the combined effects of a 54 NM/hr cross wind and cornering at .lg. This produces a side force of

approximately 15,700 pounds (Ref. 6).

For safety purposes a lateral restraint connected to the Mag-Lev, with an outrigger tire between

the track and restraint as shown in Figure 22. This additional safety design will be utilized in the event

of cryogenic equipment failure.

Propulsion/guidance coil
(vehicle)

Levitation coil (vehicle)

L I

\

Levitation strip Guidance 'null-flux' loops
(track) (track)

Figure 21. Null-Flux Loops (Ref. |)



•- 155

'lfli,.¥

FLOOR SUPPORT LINKAGE

/_/ 8"

7" / _'J
LSU _.AGNET POD

80,75" 84.75"

SECONDARY SUSPENSION

C01L SPRINGS

UQUID NITROGEN TANKS

LEVITATION MAGNET

TRACK SUPPORT

Figure 22. Cross-Sectional View

W@v



156

VEHICLE

Mag-Lev System Parameters

Passenger Capacity
Length
Width X Height
Estimated Laden Weight
Maximum Cruising Speed
Guideway Clearance
Estimated Aerodynamic Drag (Max. Speed)

ELECTRODYNAMIC SUSPENSION

100 Pax
123 Feet
9 x 12 Feet

68,500 lbf
270 NM/hr
6 inches
6800 lbf

Number of Superconducting Magnets
Strength
Size

Levitation Strips
Magnetic Suspension Height
Suspension Stiffness
Magnetic Drag (Max Speed)

LINEAR SYNCHRONOUS MOTOR PROPULSION

Equivalent Number of Superconducting Magnets
Strength
Size
Pitch
Thrust

Guideway Stator Section Length
Efficiency
Power Factor

GUIDANCE

Null-Flux Loop Length
Pitch
Conductor Cross Section
Estimated 54 NM/hr Side-wind Load

Maximum Electrodynamic Restoring Force
Lateral Stiffness

10

3.08 X 105 Ampere-turns
3.48 ft. long X .98 ft. wide
1.9 ft. wide X .39 in. thick
6 inches
2.47 X 105
3300 lbf

L
50
5 X105
1.74 ft. long X 5.58 ft. wide
1.87 ft.

10,500 lbf
1.87 ft.
.75
.93

1.87 ft.
1.03 ft.
.59 in2

15,700 lbf '
> 67,400 lbf
1.78 X 105 lbf/ft.

V

V

Safety

Safety was a major concern in the design of the Mag-Lev. The under-carriage of the Mag-Lev is

partially wrapped around the guideway in order to prevent the vehicle from derailing, by being physically

attached. The doors of the Mag-Lev will automatically be securely locked when the vehicle is in motion.

This is to prevent anyone from exiting the vehicle on the elevated guideway. Because of the high velocities
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the Mag-Lev travels at, windows of the vehicle must be made of safety glass, similar to that of aircraft.

The design of the levitation magnets and the propulsion system of the Mag-Lev vehicle is very modular so

that the failure of one magnet will not shut down the entire vehicle. Also, the modular design will

result in easy and quick repair of the vehicle by pulling out and replacing any broken components.

Through the use of computers the location and status of all vehicles and guideway will be constantly

monitored and adjusted for any emergency situation.

In case of a power failure in a section of the guideway, all vehicles of the affected guideway

between stations will brake through the use of the landing gear brakes. Vehicles that are not effected

from the loss of power will travel and unload at the next nearest station. Passengers in stranded vehicles

will remain on the vehicle until power is restored.

In case of a fire or a need for emergency exiting, the Mag-Lev would come to a complete stop, the

doors would be manually opened, and emergency chutes below the doors would inflate for passengers to

slide down from the elevated guideway. It was questioned whether to have the passenger windows pop

out during an emergency for exit, but was thought to be unwise unless emergency chutes were deployed

along the length of the vehicle. Therefore, the two passenger doors and two emergency doors were placed

such that a passenger would only have to travel a maximum distance of 25 ft to exit the vehicle. In case

it is impossible to exit through the doors, due to obstruction or damage to the doors, passengers will exit

through the three escape hatches in the ceiling of the vehicle._ " i.

In the event of a breakdown where the levitating magnets fail to lift the Mag-Lev, the vehicle

will land on its semi-retractable landing gear. The vehicle will remain in service, operating at a lower

velocity rolling on its landing gear until it can be diverted from the main guideway. The null-flux loops

and out rigger wheels will act as the guidance system.

Should all propulsion magnets of the Mag-Lev go out, the vehicle will remain on the guideway

until it can be fixed. If the time for repair will cripple the system, another Mag-Lev vehicle will pull

the down Mag-Lev to a place where it can be removed from the main guideway.

Loss of vehicle computers or system computers and all of their backup systems will result in the

on-board crew manually operating the Mag-Lev.
J

The guideway should be inspected by a test vehicle at least every three weeks to check for damage

or need of re-alignment. This guideway check can be conducted during the off peak night hours so as that

necessary repairs may be completed before the next morning rush hours at 6:00 am.

The guideway is elevated so that there will be no cross traffic of other forms of transportation,

as in the case of existing wheel on rail trains. The guideway is also elevated to make it difficult for

people to get up on the guideway. The guideway is flat instead of U shaped, so that it will be less likely

to have objects trapped on the guideway. The strength of the guideway will be proportional to that of

freeways, which have proven to be earthquake worthy.
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The worst foreseen case of safety of the Mag-Lev is a derailment of an existing wheel on rail train,

which run along side or below the Mag-Lev and its guideway. A derailment of a wheel on rail train may collide

and destroy a vertical support structure, resulting in the collapse of the guideway. A vehicle traveling at its

maximum cruise velocity of 270 kts, an emergency 0.3 g deceleration would take 1.75 NM of guideway to

come to a stop, so there would be a possibility of a Mag-Lev falling from the guideway.

The effects of magnetic field exposure on the passengers is not known to have any immediate health

hazard, except for a person with a device such as a pacemaker. However, the possibility of long term effects

cannot be ignored. The distance from the magnets to the hand-body of a seated passenger is far enough to be

exposed to less than .002 Tesla, which is the less than the 0.02 Tesla tolerable limit (Ref. 1). In case the

intensity of the magnetic field is stronger due to the concentration of super conducting magnets, below the cabin

floor is a screen of magnetically soft material.

!
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THE WILDCAT -- A TILT ROTOR FOR 2010

v

Overview

A Vertical Takeoff and Landing (VTOL) aircraft fulfills a major requirement of the California

Corridor Air Transit (CAT) system. It could be u.sed to alleviate both air and ground congestion as well as

provide a fast and convenient means of travelling within the Corridor. The VTOL will be operating from

local vertiports, and therefore must satisfy noise and safety requirements, and should have a high speed

capability in order to serve the Corridor Access Port (CAP). A typical mission would be for the VTOL

aircraft to takeoff from a residential vertiport, fly to either another city, the CAP, or across town to another

vertiport on top of an office building.

A cost analysis of the forty passenger flit rotor aircraft, along with the magnetically levitated train,

electric CTOL aircraft and airship, was conducted and showed that the tilt rotor was very cost competitive.

The study predicted a trip from Los Angeles to San Fransisco (304 nm) would cost about $65. For distances

under 115 nm a comparison was done with a 19-passenger compound helicopter. This comparison showed

that the 40-passenger tilt rotor could be used effectively for the short range (115 nm or less) as well as the

medium range (435 nm).

Mission Specifications

The mission specifications for the Wildcat, Table I, were determined from several criteria. The

number of passengers was chosen to be 40 based on the trends and recommendations discussed in the

Corridor study. The range was chosen based on the definition of the corridor and on the CAP location. The

corridor boundaries were defined as being 435 nm from California's four major cities. By using this distance

as the aircraft's range, complete service of the entire corridor would be possible. A range of 435 nm would
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also allow the Wildcat to make round-trips between all the major metropolitan areas in the corridor without

refueling. This could be very important, especially if it is decided not to store fuel at all vertiport locations.

High cruise speed is a definite advantage of the flit rotor: the cruise speed of 304 knots was chosen because,

high operating speeds yield a high level of service. The number of crew (2 pilots and 1 flight attendant) was

chosen to meet the minimum requirements outlined in FAR Part 91. If it is feasible by the year 2010 to

operate with an automated system then one or even both of the pilots could be eliminated. The minimum of

one flight attendant was chosen because the majority of the flights will be 200 nm or less and at a speed of

304 knots.

Table I. Wildcat Mission Specifications

Range, nm 435

Cruise Velocity, knots 304

Cruise Altitude, ft 20,000

Passenger Capacity 40

Crew 3

Imoortant Design Goals

Neighborhood to neighborhood service

Acceptable noise levels in hover and cruise

Acceptable pollution levels

High level of safety

Forwar

Engine ( 3

Start_ Verticle Climb

1 Taxi 2

Figure 1.

Cruise at Altitude

Mission Profile

Descent

Engine
Shut-down

Taxi 7

v
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Design Method

A major decision in the initial stage of the tilt rotor design was deciding on the type of propulsion

system to use and how to implement it. Once that was determined, the weight, drag and power requirements

were calculated using the method outlined by Roskam (Ref. 13) in his aircraft design series. To calculate

the size of the empennage and estimate the component weights, both Roskam and Torenbeck (Ref. 14) were

used. Sizing of the fuselage, aircraft interior, landing gear, and control surfaces, were done by following the

methods and examples of Roskam. The cost analysis study was performed using a cost analysis program

written by Dr. Edward Morlok of the University of Pennsylvania (Ref. 11).

Configuration

The Wildcat is a high speed derivative of the V-22 Osprey tilt rotor. The design has been improved

in many areas. Due to the military requirements of the V-22 there are restrictions which can be eliminated.

The wing of the V-22 has to be capable of being rotated for storage on aircraft carriers, thereby increasing the

structural weight. The removal of military equipment from the configuration would reduce the weight

significantly though this would be somewhat offset by the addition of passenger seating and other

accommodations (Ref. 1(3). To increase the high speed performance a lower wing thickness would be used

(the V-22 has a 23% thickness ratio). Although this will increase the wing's weight, the lower thickness

•ratio is necessary for better performance at high speeds. As with the V-22, composites will be used

extensively. Further advances in composites could further reduce weight, but since the V-22 uses so many

composites now any additional weight savings would be small. Since the engine used for the V-22 is a

derivative of the Allison 501-M62, a derivative of the same engine was scaled down to fit the Wildcat power

requirements. A major difference in the propulsion system will be the replacement of JP-4 fuel with liquid

hydrogen (LH2). The reasons for using hydrogen will be discussed later in the report. Like the V-22, the

Wildcat will have engine cross-shafting to provide for an engine failure.

Table II. Aircraft Weights

Gross Takeoff, lb 32,200

Empty, Ib 20,453

FueI(LH2), lb 2140

Payload, Ib 9440

v
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Wing and Empennage

Investigations into existing tilt rotor wing airfoils revealed that the V-22 had a thickness ratio

of 23 percent. This had been chosen, in part, because a large volume in the wings was necessary in order to

store fuel like a conventional aircraft. Fuel in the Wildcat, however, will be stored in integrated fuselage

tanks. A thinner airfoil was chosen for the Wildcat due to this reason and for improved performance at high

speeds. A NACA 2415 was selected over a 6-series laminar airfoil because most of the wing will be in the

propeller downwash and the 2415 has a higher maximum lift coefficienL

Table III. Wing and Empennage Specifications

Area, ft 2 357.8

Chord, ft 7.4

Span, ft 48.2

Quarter Chord Sweepback, degrees -6.0

Taper Ratio 1.0

Astx_t Ratio 6.5

Airfoil Section NACA 2415

Area, ft2 100.1

Average Chord, ft 5.2

Span, ft 20.0

Taper Ratio 0.5

Quarter Chord Sweepback, degrees 30.0

Aspect Ratio 4.0

Area,ft2 68.6

Average Chord, ft 8.2

Span, ft 8.7

Taper Ratio 0.5

Quarter Chord Sweepback, degrees 40.0

Aspect Ratio 1.1
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Rotor Airfoil

The rotor system design was an important process because of the need to use the rotors in both

hover and cruise. The rotor design also has a great effect on the noise generated, a critical area of the design.

The rotors were designed with six blades to help reduce noise levels; by going to a higher number of blades

the rotor tip speeds can be reduced, lessening the noise produced. The disadvantage of increasing the number

of blades from four to six was a 300 lb increase in empty weight. Another way of reducing the tip speed is

to increase the rotor diameter. Although this is fine for hover, the blades on the tilt rotor are already over-

sized for forward flight and an increase in diameter would only suba'act from the cruise performance. An

alternative would be a variable diameter rotor which could reduce the rotor diameter in forward flight and

then enlarge it again for vertical flight. This mechanism improves efficiency in cruise, but would not

decrease noise in hover. It was decided not to use the variable diameter because of the weight penalty

associated with the retracting mechanism. If the number of blades was increased to six, along with using

the variable rotor, there would be an even greater weight penalty.

The diameters of the rotors were kept about the same size of those on the V-22, because the

Wildcat's wingspan is approximately equal to the V-22 wing span. Once the rotor diameter was known the

disc loading could be determined. A disc loading of'14.9 was obtained, comparing well to the XV-15 and

the V-22 which have disc loadings of 13.2 and 17.4 respectively. The XV-15 has a low disc loading

because it is a small experimental aircraft. The V-22 is much higher than the XV-15 and the Wildcat design

attempted to achieve a low disc loading without having to increase the rotor diameter much more than the

V-22. A low disc loading is desirable because low disc loading corresponds to low noise.

After deciding on the number of blades and the disc loading, a tip speed had to be chosen. A tip

speed of 450 ft/s was chosen for both hover and cruise. These are very low numbers compared to the V-22

which has tip speeds of 790 ft/s in hover and 662 ft/s in cruise. One of the reasons is because a six blade

configuration was used, as opposed to three blades on the V-22. In addition is that because hydrogen fuel is

being used, the takeoff weight is lower and less thrust is required to hover. Normally the rotor speed is

reduced in the cruise mode because of the compressibility effects at high tip speeds. For this case, however,

it was kept the same because the speed was low enough to disregard compressibility effects.

The rotor airfoil used for the Wildcat is the Bell XN12. This is a current airfoil, chosen partially

because the performance data is available. It must be noted that there is currently a vast amount of research

being done on advanced airfoils for tilt rotors and by using an advanced airfoil the overall performance could

be improved. The XN12 is 12% thick and has a CLmax of 1.40 at a Mach number of .45 (Ref. 12). This

airfoil section was modified by tapering the blade tips. This helps to alleviate noise and it also improves

rotor performance. The choice of the tip shape was based on data in Reference 6. An inboard twist slope of

-48 degrees and an outboard twist of -34 degrees was determined to be an optimum combination (Ref. 9).
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Table IV. Rotor Specifications

Radius, ft 18.6

Chord, ft 1.9

Number of blades 6

Disc Loading, lb/ft 2 14.8

Solidity 0.193

Tip Speed, ft/s 450.0

Twist (inboard/outhoard), degrees -48/-34

Airfoil Section Bell XNI2

V

v

Propulsion System

The engines used are a rubberized version of the Allison 501-M62 turbo-prop. They are rated at

5775 shp each, as was determined from the one engine inoperative vertical climb requirements. They also

have been modified to burn hydrogen fuel.

Table V. Wildcat Engine Specifications

Width, in 25.2

Height, in 30.9

Length, in 5.9

Intake Diameter, in 17.2

Jet Pipe Diameter, in 23.6

Rated Shaft Horsepower, shp 5775

Liquid Hydrogen Fuel System

Liquid hydrogen CLH2) was chosen as the fuel for the Wildcat for several reasons. One reason is

that virtually no pollutants are produced from burning LH2 as opposed to burning kerosene based fuels. Air

pollution is currently a major environmental problem in California, and the situation will only get worse

unless drastic changes are made. Air transportation only produces a small percentage of the air pollution, but

there should still be concern about reducing what is produced. LH2 is one way that the dependency on fossil

fuels can be reduced. LH2 is abundantly available throughout most of the world and cost competitive with
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other fuels in the United States. The cost to produce LH2 by nuclear electrolytic methods was ten cents per

pound in 1987 (Ref. 3).

In the event of a spill or crash, hydrogen would be safer than conventional jet fuel. Due to the

buoyancy effect of LH2, it would rise quickly away from the spill. It also burns much faster than current jet

fuel. Passengers aboard an aircraft using LH2 would have a good chance of surviving the fire because it

would burn up away from them and would burn away very quickly (Ref. 2). Passengers caught in a Jet-A

fuel fire would probably suffer longer and have a greater chance of dying because the kerosene based jet fuels

tend to linger and burn longer.

The LH2 is stored in large integral tanks located near the front and aft sections of the fuselage.

Integral tanks not only serve as fuel containers, but are also designed to be part of the basic aircraft structure

(Ref. 2). These integral tanks can be designed so that in the event of a crash they would rupture at the top,

and the fuel would be expelled upwards so that the passengers would not be affected as the hydrogen burned.

The fuel tanks are insulated with microspheres (hollow borosylicate spheres 80 microns in

diameter) contained in an annulus surrounding the tank, preventing boil off. The annulus is pumped to

create a soft vacuum of about 0.00193 psi (Ref. 2). The total thickness of the tank and insulation is about

four inches which adds 536 lbs to the the aircraft weight. The weight is largely due to the large volume the

LH2 requires. Nevertheless, because hydrogen can supply the same amount of energy as Jet-A for 2.8 times

lower weight, there is an overall weight savings. Table VI shows the weight saved using LH2 over Jet-A

for the Wildcat. The benefits of hydrogen that affected the decision to use it are summarized in Table VII.

Table VI. Weight Comparison of LH2 and Jet-A Fuels

LH2_ .let-A Fuel (Weights_

Fuel System: 536 ib Fuel System: 454 lb

Fuel: 1962 lb Fuel: 5971 lb

Total = 2498 lb Total = 6425 lb

Net weight savings using LH2 = 3927 lb
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Aircraft

Noise

Cost

Performance

Table VII. Benefits of LH-2 vs. Jet-A Fuel

Dimensions Reduced gross weight

Reduced engine noise

No hydrocarbons (COx, SOx) particulates, or odors

Reduced NOx concentrations

Lighter, less cosily aircraft

Longer engine life - less maintenance

Equal or better

Can be made using any energy source

The Wildcat is overpowered for cruise and even for hover with all engines operating (AEO), due to

the requirement of being able to climb vertically with one engine inoperative (OEI). The requirement is

that the minimum rate of climb (ROC) must be at least 100 feet per minute (fpm) with OEI. The OEI

requirement is shown in Figure 2 as a function of power loading and wing loading. Along with the hover

requirement is the cruise requirement. From Figure 2, a wing loading and power loading were determined.

• The corresponding values must fall under both of the curves. A high wing loading of 90 lb/ft 2 was used.

From this and the OEI hover line, a power loading was determined.
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Figure 2. Power Loading vs. Wing Loading



- 168

Since the turbo-prop engines were rubberized and converted to use LH2, the power available versus

velocity relationship had to be estimated. The power available for a turbo-prop engine increases slightly as

forward velocity is increased. When a high enough velocity is attained the propeller efficiency begins to

rapidly decrease and thus the available power decreases. The power required is that which is necessary to

overcome the parasite and induced drag. Figure 3 shows the available and required powers as functions of

velocity for sea level. According to this graph the maximum velocity at sea level would be about 380

knots. The graph also shows that the velocity for maximum range to be 180 knots and 145 knots for

maximum endurance.
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Figure 3. Power vs. Velocity at Sea Level

v

Figure 4 is power versus velocity for an altitude of 20,000 ft. This graph shows the same trends

as Figure 3. This was interesting because normally a higher maximum velocity can be achieved at the

cruise altitude because of the lower density. In the two cases shown, a slightly higher maximum velocity

is obtained operating the Wildcat at sea level even though the required and available powers were greater

than at the cruise altitude. From Figure 4, it can be seen that the velocities for maximum range and

maximum endurance at 20,000 feet altitude, are 215 knots and 190 knots respectively.

v
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Another area of performance determined was ROCmax for AEO. This is shown in Figure 5.

According to this data the cruise ROCmax at sea level is close to 6400 fpm. The service ceiling in the

cruise mode seems to be about 29,900 ft. These rates of climb am very acceptable, and are large because of

the excess power available. : L t
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Cockpit and Cabin Layouts
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The Wildcat's cockpit is equipped with provisions for a pilot and co-pilot. Because of the location

of the forward fuel tank the cockpit is not accessible from the cabin compartrnent. Therefore it is necessary

for the cockpit to have its own door. In addition to the one cockpit exit there is one primary passenger exit

and three emergency exits to satisfy FAR Part 25.

The cabin will accommodate forty passengers and one flight attendant. It is equipped with a

lavatory for passenger convenience and is pressurized for operating at high altitudes. The baggage

compartment is larger than a typical 40 passenger aircraft, so that there is enough space to accommodate

excess baggage for passengers transferring at the CAP to international and transcontinental flights. When

the baggage compartment is not completely filled, the extra room can be used to transport freight. There is

also enough overhead room for carry-on luggage. The diameter of the fuselage is large enough to allow for

two rows of two seats abreast each. A critical change to the fuselage was lengthening it to allow for the

volume required for the LH2 tanks. The tanks are positioned at each end of the fuselage for center of gravity

purposes.

Landing Gear

v..

The main landing gear is fully relractable. When in the wheel down position, the main gear are

located 33 feet back from the aircraft nose. Each main gear is equipped with one tire 30 inches in diameter

and 9 inches wide. The struts for the main gear are 5.5 inches in diameter. The nose gear fully retracts

underneath the cockpit, swinging rearward and twisting ninety degrees so that it can fit in the shallow space

underneath the cockpit. The nose gear uses dual tires that are 23.4 inches in diameter and 6.5 inches wide.

Noise

v

v

One of the design priorities was to have a relatively quite aircraft since it will need to operate in

residential areas to provide near door-to-door service. As already mentioned in Table VII, hydrogen fueled

engines are not as loud as engines that burn Jet-A. Because of the low rotor tip speeds, noise was

significantly reduced in hover and in cruise. Another factor which will help in noise reduction is the tip

shape. It was difficult, however, to determine just how much the noise levels would be reduced. The

effective perceived noise levels of the Wildcat were calculated using Faulkner's method (Ref. 5). The

resulting noise levels (in dB), were then converted to equivalent perceived noise levels (in EPNdB). The

noise level in hover at 500 feet altitude was found to be 87.0 EPNdB, while 69.3 EPNdB was the noise

level in cruise at 217 knots at 500 feet. These noise levels are highly acceptable, since a helicopter having an

equivalent takeoff weight would normally have a noise level of 98.6 EPNdB in hover (Ref. 4).
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Safety

Aircraft flight safety for the Wildcat is of primary importance. Since the Wildcat will be operating

over densely populated areas in large cities, it should be designed to be overly safe and easily operated. As

mentioned before, the Wildcat uses a cross-shaft to handle an engine failure. If an engine were to fail, the

Wildcat is sized with enough power so that one engine would be able to drive both rotors and provide enough

thrust to climb vertically at 100 fpm. Another added _fety feature is the use of hydrogen fuel which has

many safety advantages over Jet-A type fuels. These safety factors were discussed previously in the fuel

section.

Other safety features would include the use of advanced digital avionics and on board computers to

ease the crew's workload, increase systems reliability, and reduce maintenance time. Fly-by-wire flight

controls also will contribute to better safety because of higher reliability. Current examples of this type of

eleclronic technology are the reduced workload cockpits of the General Dynamics F-16 Falcon and the

McDonnell Douglas F/A-18 Hornet.

More extensive civilian pilot training programs could also be implemented to make more proficient

aircrews. Examples of such programs are the the.pilot training programs of the United Staltes military,

where heavy emphasis is placed on emergency procedures, aircraft recovery from unusual flight attitudes,

instrument flying, and precision flying. To summarize the concerns regarding flight safety; high technology

cockpits will reduce the aircrew's workload, prevent task saturation, and increase situational awareness.

Ground Facilities

There are essentially two ways to refuel an aircraft at a landing site. One way is to deliver the fuel

to the aircraft with fuel trucks, the other is to have underground transfer lines to the aircraft parking site.

The transfer line solution is generally more economical than the mobile tank (semi-trailer or truck) solution

for short distances (a few miles) and large quantities (greater than 30 cubic feet per minute). At the CAP,

undergroand transfer lines will be preferred over using a large number of vehicles to refuel (Ref. 1).

The LH2 could be stored at airports either in large, heavily, insulated tanks above ground or in less

heavily insulated tanks below ground level. When the aircraft is being refueled, all lines and connections

must be completely leak proof. The refueling facilities would also have a gaseous H2 recovery system for

the hydrogen that will boil off due to the warm ambient temperatures.

If only one type of aircraft in a transportation system uses LH2 for fuel, the refueling facilities

would be relatively expensive. However, in the next century, alternative fuels like LH2 will probably be

widely used among the aircraft industry. Because the Wildcat is an aircraft designed to be operational after
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the year 2010, the proposed LH2 refueling facilities will be able to accommodate other hydrogen aircraft,

thus making the LH2 refueling facilities cost competitive with current types of refueling facilities.

Cost Analysis

Figure 6 shows the relationship of cost per mile for three different volumes of passenger service. In

the initial phase of VTOL operation, approximately 5,000 passengers per day would be served. Eventually,

as more tilt rotors enter service this number would be increased to about 100,1300 passengers per day. The

figures show that for triplengths above 40 miles, the cost of traveling on the Wildcat is very affordable.

These trips are between vertiports, located every 10 miles, serving communities and business districts within

a five mile radius. This reduces ground time, making the Wildcat both convenient and affordable.
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Areas of Further Study

Areas of further study include technological breakthroughs in how to pump LH2, ground storage

facilities of LH2, electric methods of propulsion, and variable diameter rotors. The current LH2 pumps used

on aircraft are the ones used on the space shuttles. Because the pumps have to withstand extremely cold

temperatures, the pumps on the space shuttles are only usable for one flight.

Because LH2 requires a large volume for storage, areas for storing the LH2 at existing and proposed

airports would have to be found. For example, some existing airports that are located where the water table

is just below ground level would have to store the LH2 above ground, requiring more above ground storage

area.

Electric propulsion is also an alternative to current aviation fuels. Electric fuel cells that use

lithium for an anode, a silver oxide sheet as a cathode, and air or hydrogen peroxide for an oxidizer have been

theoretically shown to provide enough amperage to electric motors that in turn provide enough power to

propel commercial sized aircraft (Ref. 7 and 8). Advantages of using electric propulsion are: no air

pollution, low engine noise, independence from fossil fuels, and a virtually infinite supply of lithium and

water for hydrogen peroxide production.

Variable diameter rotors could improve .flltrotor performance. During hover the ro[or blades could

be extended to the maximum diameter allowed for the aircraft to provide enough lift without having high tip

speeds. When the tilt rotor is in forward cruise, the rotors would be retracted to the minimum allowable

diameter so that the blade tips do not experience the resulting high vector velocities. One possible way of

extending and retracting the rotor blades is to use a system of jackscrews. However, a possible problem that

could require extensive analysis, is that of rotor blade vibrations.

Conclusions

The Wildcat can effectively serve the California Corridor in the next century. Airport congestion

would be reduced because the passenger flow would be diverted through the vertiports and the trip lime of the

passenger would be reduced because the average distance to a vertiport would be three and a half miles from

the passenger's home. With the use of a major hub located in the central San Joaquin Valley, large numbers

of people who need to travel to different parts of the state could be served efficiendy.

The time that passengers spend on the ground in the aircraft would be reduced because of the

virtual elimination of aircraft taxi time. Because of the design speed of 304 knots, and the possibility of an

increase in cruise velocity to nearly 350 knots in the future using high speed tip shapes and variable diameter

rotors. The Wildcat and any future derivatives would be very competitive with regional turboprops in cruise.

The Wildcat would not contribute toair pollution in California, nor the depletion of valuable fossil

fuels. It would be relatively quiet for neighborhood service and would be safer in the event of an aircraft
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accident. The Wildcat is a highly flexible aircraft capable of providing service between existing airports,

heliports, and future vertiports. Tilt rotor aircraft, such as the Wildcat, have the potential of becoming

highly successful commercial aircraft not only in California, but in any other region of the world plagued by

transportation problems.
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